Part Number Hot Search : 
B105M ITMS4037 OA5669 2812D LXT361QE 445LP4E PS151 NTE7409
Product Description
Full Text Search
 

To Download MC68HC908SR12 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MC68HC908SR12 MC68HC08SR12
Data Sheet
M68HC08 Microcontrollers
MC68HC908SR12 Rev. 5.0 07/2004
freescale.com
MC68HC908SR12 MC68HC08SR12
Data Sheet
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://www.freescale.com The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. This product incorporates SuperFlash(R) technology licensed from SST.
(c) Freescale Semiconductor, Inc., 2004
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Data Sheet 3
Revision History
Revision History
Date Revision Level Description Table 24-2 . Operating Range and Table 24-11 . 3V ADC Electrical Characteristics -- changed minimum VDD for ADC operation to 3V. 15.8.4 ADC Auto-Scan Mode Data Registers (ADRL1-ADRL3) -- Corrected ADRL-ADRL3 register bits. PTB0/SDA0, PTB1/SCL0, PTB2/SDA1/TxD, and PTB3/SCL1/RxD pins -- clarified these open-drain pins throughout this document. 8.4.6 Programming the PLL -- deleted redundant step in programming the PLL. Figure 10-1 . Monitor Mode Circuit -- corrected connections for PTA1 and PTA2. Table 10-1 . Monitor Mode Signal Requirements and Options -- clarified clock input requirements for monitor mode entry. Section 11. Timer Interface Module (TIM) -- timer discrepancies corrected throughout this section. February, 2002 4 18.5.1 Port C Data Register (PTC) and 18.5.2 Data Direction Register C (DDRC) -- added notes for PTC6 and PTC7 on 42-pin package. Figure 19-3 . IRQ2 Block Diagram and 19.5 IRQ1 and IRQ2 Pins -- corrected IRQ2 for BIH and BIL instructions. Table 24-4 . 5V DC Electrical Characteristics and Table 24-5 . 3V DC Electrical Characteristics -- added additional IDD measurements. Table 24-13 . Current Detection Electrical Characteristics -- updated trip point values. Appendix A. MC68HC08SR12 -- added appendix for ROM part: MC68HC08SR12. Page Number(s) 373, 381
July 2004
5
248
323, 254, 293
120 167 169 181
327, 329
338, 339
374, 376
382 393
Data Sheet 4
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
List of Sections
Section 1. General Description . . . . . . . . . . . . . . . . . . . . 35 Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Section 3. Random-Access Memory (RAM) . . . . . . . . . . 61 Section 4. FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . 63 Section 5. Configuration and Mask Option Registers (CONFIG & MOR) . . . . . . . . . . . . . . . . . . . . . . 73 Section 6. Central Processor Unit (CPU) . . . . . . . . . . . . 81 Section 7. Oscillator (OSC) . . . . . . . . . . . . . . . . . . . . . . 101 Section 8. Clock Generator Module (CGM) . . . . . . . . . . 111 Section 9. System Integration Module (SIM) . . . . . . . . 141 Section 10. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . 165 Section 11. Timer Interface Module (TIM) . . . . . . . . . . . 181 Section 12. Timebase Module (TBM) . . . . . . . . . . . . . . . 205 Section 13. Pulse Width Modulator (PWM) . . . . . . . . . . 211 Section 14. Analog Module . . . . . . . . . . . . . . . . . . . . . . 221 Section 15. Analog-to-Digital Converter (ADC) . . . . . . 231 Section 16. Serial Communications Interface (SCI) . . . 251 Section 17. Multi-Master IIC Interface (MMIIC) . . . . . . . 291 Section 18. Input/Output (I/O) Ports . . . . . . . . . . . . . . . 317 Section 19. External Interrupt (IRQ) . . . . . . . . . . . . . . . 335
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor List of Sections
Data Sheet 5
List of Sections Section 20. Keyboard Interrupt Module (KBI). . . . . . . . 343 Section 21. Computer Operating Properly (COP) . . . . 351 Section 22. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . . 357 Section 23. Break Module (BRK) . . . . . . . . . . . . . . . . . . 363 Section 24. Electrical Specifications. . . . . . . . . . . . . . . 371 Section 25. Mechanical Specifications . . . . . . . . . . . . . 387 Section 26. Ordering Information . . . . . . . . . . . . . . . . . 391 Appendix A. MC68HC08SR12 . . . . . . . . . . . . . . . . . . . . 393
Data Sheet 6 List of Sections
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Table of Contents
Section 1. General Description
1.1 1.2 1.3 1.4 1.5 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.6 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 1.6.1 Power Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . . . 42 1.6.2 Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . . 42 1.6.3 External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.6.4 External Interrupt Pin (IRQ1) . . . . . . . . . . . . . . . . . . . . . . . .43 1.6.5 Analog Power Supply Pin (VDDA) . . . . . . . . . . . . . . . . . . . . .43 1.6.6 Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.6.7 ADC Voltage Low Reference Pin (VREFL) . . . . . . . . . . . . . . 43 1.6.8 ADC Voltage High Reference Pin (VREFH). . . . . . . . . . . . . . 43 1.6.9 External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . 43 1.6.10 Analog Input Pins (OPIN1/ATD0, OPIN2/ATD1, VSSAM) . . . 44 1.6.11 Port A Input/Output (I/O) Pins (PTA7-PTA0) . . . . . . . . . . . . 44 1.6.12 Port B I/O Pins (PTB6-PTB0) . . . . . . . . . . . . . . . . . . . . . . . 44 1.6.13 Port C I/O Pins (PTC7-PTC0) . . . . . . . . . . . . . . . . . . . . . . . 44 1.6.14 Port D I/O Pins (PTD7/KBI7-PTD0/KBI0) . . . . . . . . . . . . . . 44
Section 2. Memory Map
2.1 2.2 2.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 45
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Table of Contents
Data Sheet 7
Table of Contents
2.4 2.5 Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Section 3. Random-Access Memory (RAM)
3.1 3.2 3.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Section 4. FLASH Memory
4.1 4.2 4.3 4.4 4.5 4.6 4.7 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 66 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 67 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .68
4.8 FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 4.8.1 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . 70
Section 5. Configuration and Mask Option Registers (CONFIG & MOR)
5.1 5.2 5.3 5.4 5.5 5.6 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . . 75 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . . 77 Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Data Sheet 8
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Table of Contents Freescale Semiconductor
Table of Contents
Section 6. Central Processor Unit (CPU)
6.1 6.2 6.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 6.7 6.8 6.9 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Section 7. Oscillator (OSC)
7.1 7.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.3 Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.3.1 CGM Reference Clock Selection . . . . . . . . . . . . . . . . . . . . 104 7.3.2 TBM Reference Clock Selection . . . . . . . . . . . . . . . . . . . . 105 7.4 7.5 7.6 Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 RC Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 X-tal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.7.1 Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . 108 7.7.2 Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . 109
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Table of Contents Data Sheet 9
Table of Contents
7.7.3 7.7.4 7.7.5 7.7.6 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 109 CGM Oscillator Clock (CGMXCLK) . . . . . . . . . . . . . . . . . . 109 CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . . 109 Oscillator Clock to Time Base Module (OSCCLK) . . . . . . . 109
7.8 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 7.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 7.9 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . 110
Section 8. Clock Generator Module (CGM)
8.1 8.2 8.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 8.4.1 Oscillator Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.4.2 Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . . 116 8.4.3 PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.4.4 Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . . 118 8.4.5 Manual and Automatic PLL Bandwidth Modes. . . . . . . . . . 118 8.4.6 Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 8.4.7 Special Programming Exceptions . . . . . . . . . . . . . . . . . . . 124 8.4.8 Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . . 124 8.4.9 CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . 125 8.5 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.5.1 External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . 126 8.5.2 PLL Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . . 126 8.5.3 PLL Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . 126 8.5.4 Oscillator Output Frequency Signal (CGMXCLK) . . . . . . . 126 8.5.5 CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . . 126 8.5.6 CGM VCO Clock Output (CGMVCLK) . . . . . . . . . . . . . . . . 127 8.5.7 CGM Base Clock Output (CGMOUT). . . . . . . . . . . . . . . . . 127 8.5.8 CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . . 127 8.6 CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8.6.1 PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Data Sheet 10 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Table of Contents Freescale Semiconductor
Table of Contents
8.6.2 8.6.3 8.6.4 8.6.5 8.7
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . .130 PLL Multiplier Select Registers . . . . . . . . . . . . . . . . . . . . . 132 PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . . .133 PLL Reference Divider Select Register . . . . . . . . . . . . . . . 134 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
8.8 Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 8.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136 8.8.3 CGM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . 136 8.9 Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . . 137 8.9.1 Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . .137 8.9.2 Parametric Influences on Reaction Time . . . . . . . . . . . . . . 137 8.9.3 Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Section 9. System Integration Module (SIM)
9.1 9.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . 144 9.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9.3.2 Clock Start-up from POR or LVI Reset. . . . . . . . . . . . . . . . 145 9.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . 146 9.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . 146 9.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . 147 9.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148 9.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . 149 9.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 9.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .150 9.4.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . 150 9.4.2.6 Monitor Mode Entry Module Reset. . . . . . . . . . . . . . . . . 150 9.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . 151 9.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . 151 9.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . 151
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Table of Contents Data Sheet 11
Table of Contents
9.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152 9.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 9.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.6.1.3 Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . .155 9.6.1.4 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . 155 9.6.1.5 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . 157 9.6.1.6 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . 157 9.6.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 9.6.3 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 9.6.4 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 158 9.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 9.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159 9.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 9.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 9.8.1 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 162 9.8.2 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . 163 9.8.3 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 164
Section 10. Monitor ROM (MON)
10.1 10.2 10.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 10.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 10.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 10.4.3 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 10.4.4 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 10.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 10.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Data Sheet 12
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Table of Contents Freescale Semiconductor
Table of Contents
Section 11. Timer Interface Module (TIM)
11.1 11.2 11.3 11.4 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183 11.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 11.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 188 11.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .189 11.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 189 11.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 190 11.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 191 11.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 11.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
11.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 11.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194 11.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194 11.8 11.9 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 194 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 11.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 196 11.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 11.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 199 11.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 200 11.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Section 12. Timebase Module (TBM)
12.1 12.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Table of Contents
Data Sheet 13
Table of Contents
12.3 12.4 12.5 12.6 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206 Timebase Register Description. . . . . . . . . . . . . . . . . . . . . . . . 207 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208
12.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 12.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209 12.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
Section 13. Pulse Width Modulator (PWM)
13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 PWM Period and Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . 214 PWM Automatic Phase Control . . . . . . . . . . . . . . . . . . . . . . .215 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
13.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 13.10.1 PWM Control Register (PWMCR) . . . . . . . . . . . . . . . . . . . 217 13.10.2 PWM Clock Control Register (PWMCCR) . . . . . . . . . . . . . 218 13.10.3 PWM Data Registers (PWMDR0-PWMDR2) . . . . . . . . . . 219 13.10.4 PWM Phase Control Register . . . . . . . . . . . . . . . . . . . . . . 220
Section 14. Analog Module
14.1 14.2 14.3 14.4
Data Sheet 14
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Table of Contents Freescale Semiconductor
Table of Contents
14.4.1 14.4.2 14.4.3 14.4.4 14.4.5 14.5
On-Chip Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . 223 Two-Stage Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Amplifier Response Time . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Current Flow Detection Amplifier . . . . . . . . . . . . . . . . . . . . 225 Current Flow Detect Output . . . . . . . . . . . . . . . . . . . . . . . . 225 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225
14.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 14.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 14.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 14.7 Analog Module I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . 226 14.7.1 Analog Module Control Register (AMCR) . . . . . . . . . . . . . 226 14.7.2 Analog Module Gain Control Register (AMGCR) . . . . . . . . 227 14.7.3 Analog Module Status and Control Register (AMSCR) . . . 228
Section 15. Analog-to-Digital Converter (ADC)
15.1 15.2 15.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 15.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 15.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235 15.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 15.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 15.4.5 Auto-scan Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 15.4.6 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 15.4.7 Data Register Interlocking . . . . . . . . . . . . . . . . . . . . . . . . . 239 15.4.8 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 15.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239
15.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 15.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239 15.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 15.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 15.7.1 ADC Voltage In (VADIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Table of Contents Data Sheet 15
Table of Contents
15.7.2 15.7.3 15.7.4 15.7.5 ADC Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . 240 ADC Analog Ground Pin (VSSA). . . . . . . . . . . . . . . . . . . . . 240 ADC Voltage Reference High Pin (VREFH). . . . . . . . . . . . . 241 ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . . 241
15.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 15.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .242 15.8.2 ADC Clock Control Register. . . . . . . . . . . . . . . . . . . . . . . . 244 15.8.3 ADC Data Register 0 (ADRH0 and ADRL0). . . . . . . . . . . . 246 15.8.4 ADC Auto-Scan Mode Data Registers (ADRL1-ADRL3). . 248 15.8.5 ADC Auto-Scan Control Register (ADASCR). . . . . . . . . . . 248
Section 16. Serial Communications Interface (SCI)
16.1 16.2 16.3 16.4 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
16.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254 16.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 16.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 16.5.2.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 16.5.2.2 Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 259 16.5.2.3 Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 16.5.2.4 Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 16.5.2.5 Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . . 261 16.5.2.6 Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .261 16.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 16.5.3.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 16.5.3.2 Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 16.5.3.3 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 16.5.3.4 Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 16.5.3.5 Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . .266 16.5.3.6 Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 16.5.3.7 Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 16.5.3.8 Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Data Sheet 16
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Table of Contents Freescale Semiconductor
Table of Contents
16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271 16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271 16.7 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .272
16.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 16.8.1 TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 16.8.2 RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 16.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 16.9.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 16.9.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 16.9.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 16.9.4 SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 16.9.5 SCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 16.9.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 16.9.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . .288
Section 17. Multi-Master IIC Interface (MMIIC)
17.1 17.2 17.3 17.4 17.5 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 Multi-Master IIC System Configuration . . . . . . . . . . . . . . . . . . 295
17.6 Multi-Master IIC Bus Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 295 17.6.1 START Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 17.6.2 Slave Address Transmission . . . . . . . . . . . . . . . . . . . . . . .296 17.6.3 Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 17.6.4 Repeated START Signal . . . . . . . . . . . . . . . . . . . . . . . . . . 297 17.6.5 STOP Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 17.6.6 Arbitration Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 17.6.7 Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 17.6.8 Handshaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 17.6.9 Packet Error Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 17.7 MMIIC I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Data Sheet 17
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Table of Contents
Table of Contents
17.7.1 17.7.2 17.7.3 17.7.4 17.7.5 17.7.6 17.7.7 17.7.8 MMIIC Address Register (MMADR) . . . . . . . . . . . . . . . . . . 299 MMIIC Control Register 1 (MMCR1) . . . . . . . . . . . . . . . . . 301 MMIIC Control Register 2 (MMCR2) . . . . . . . . . . . . . . . . . 303 MMIIC Status Register (MMSR). . . . . . . . . . . . . . . . . . . . . 305 MMIIC Data Transmit Register (MMDTR) . . . . . . . . . . . . . 307 MMIIC Data Receive Register (MMDRR). . . . . . . . . . . . . . 308 MMIIC CRC Data Register (MMCRCDR). . . . . . . . . . . . . . 309 MMIIC Frequency Divider Register (MMFDR) . . . . . . . . . . 310
17.8 Program Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 17.8.1 Data Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312 17.9 SMBus Protocols with PEC and without PEC. . . . . . . . . . . . . 313 17.9.1 Quick Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 17.9.2 Send Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 17.9.3 Receive Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 17.9.4 Write Byte/Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 17.9.5 Read Byte/Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 17.9.6 Process Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 17.9.7 Block Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 17.10 SMBus Protocol Implementation . . . . . . . . . . . . . . . . . . . . . . 316
Section 18. Input/Output (I/O) Ports
18.1 18.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
18.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 18.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . 320 18.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . 321 18.3.3 Port A LED Control Register (LEDA) . . . . . . . . . . . . . . . . . 323 18.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 18.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . 324 18.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . 325 18.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 18.5.1 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . 327 18.5.2 Data Direction Register C (DDRC). . . . . . . . . . . . . . . . . . . 329 18.5.3 Port C LED Control Register (LEDC) . . . . . . . . . . . . . . . . . 330
Data Sheet 18 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Table of Contents Freescale Semiconductor
Table of Contents
18.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 18.6.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . 331 18.6.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . . 332
Section 19. External Interrupt (IRQ)
19.1 19.2 19.3 19.4 19.5 19.6 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336 IRQ1 and IRQ2 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 339
19.7 IRQ Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 19.7.1 IRQ1 Status and Control Register . . . . . . . . . . . . . . . . . . . 340 19.7.2 IRQ2 Status and Control Register . . . . . . . . . . . . . . . . . . . 341
Section 20. Keyboard Interrupt Module (KBI)
20.1 20.2 20.3 20.4 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
20.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 20.5.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 20.6 Keyboard Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . 347 20.6.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 348 20.6.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 349 20.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 20.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349 20.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349 20.10 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 350
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Table of Contents
Data Sheet 19
Table of Contents Section 21. Computer Operating Properly (COP)
21.1 21.2 21.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352
21.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 21.4.1 ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 21.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 21.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353 21.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 21.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 21.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 21.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 21.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 354 21.5 21.6 21.7 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355
21.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 21.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356 21.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356 21.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 356
Section 22. Low-Voltage Inhibit (LVI)
22.1 22.2 22.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
22.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358 22.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 22.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . .360 22.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 360 22.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 22.5
Data Sheet 20
LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Table of Contents Freescale Semiconductor
Table of Contents
22.6
LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361
22.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 22.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 22.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362
Section 23. Break Module (BRK)
23.1 23.2 23.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
23.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364 23.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 366 23.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .366 23.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . . 366 23.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 366 23.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 23.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366 23.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367 23.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 23.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . . 367 23.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 368 23.6.3 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 368 23.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 370
Section 24. Electrical Specifications
24.1 24.2 24.3 24.4 24.5 24.6 24.7 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 372 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 373 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 5.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 374 3.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 376
Data Sheet 21
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Table of Contents
Table of Contents
24.8 24.9 5.0V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 3.0V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
24.10 5.0V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 378 24.11 3.0V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 379 24.12 5.0V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .380 24.13 3.0V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .381 24.14 Analog Module Electrical Characteristics . . . . . . . . . . . . . . . . 382 24.14.1 Temperature Sensor Electrical Characteristics . . . . . . . . . 382 24.14.2 Current Detection Electrical Characteristics. . . . . . . . . . . . 382 24.14.3 Two-Stage Amplifier Electrical Characteristics. . . . . . . . . . 382 24.15 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 383 24.16 MMIIC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 383 24.17 CGM Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . 385 24.18 FLASH Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . 386
Section 25. Mechanical Specifications
25.1 25.2 25.3 25.4 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 48-Pin Plastic Low Quad Flat Pack (LQFP) . . . . . . . . . . . . . . 388 42-Pin Shrink Dual In-Line Package (SDIP) . . . . . . . . . . . . . . 389
Section 26. Ordering Information
26.1 26.2 26.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Data Sheet 22
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Table of Contents Freescale Semiconductor
Table of Contents
Appendix A. MC68HC08SR12
A.1 A.2 A.3 A.4 A.5 A.6 A.7 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .393 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 Mask Option Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 Reserved Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397
A.8 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 A.8.1 5.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . 398 A.8.2 3.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . 399 A.8.3 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 A.9 ROM Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Table of Contents
Data Sheet 23
Table of Contents
Data Sheet 24
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Table of Contents Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
List of Figures
Figure 1-1 1-2 1-3 1-4 2-1 2-2 4-1 4-2 4-3 4-4 4-5 5-1 5-2 5-3 5-4 6-1 6-2 6-3 6-4 6-5 6-6 7-1 7-2 7-3 7-4
Title
Page
MC68HC908SR12 Block Diagram . . . . . . . . . . . . . . . . . . . . . . 39 48-Pin LQFP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . 40 42-Pin SDIP Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . .48 FLASH I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 64 FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . . 65 FLASH Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . . . 69 FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . . 70 FLASH Block Protect Start Address . . . . . . . . . . . . . . . . . . . . .70 CONFIG and MOR Register Summary. . . . . . . . . . . . . . . . . . . 74 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . . 75 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . . 77 Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . . 79 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . . 86 Oscillator Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . 103 Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . 104 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . 105 Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Data Sheet List of Figures 25
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
List of Figures
Figure 7-5 7-6 8-1 8-2 8-3 8-4 8-5 8-6 8-7 8-8 8-9 8-10 9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-9 9-10 9-11 9-12 9-13 9-14 9-15 9-16 9-17 9-18 9-19 9-20 9-21 9-22 Title Page
RC Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Crystal Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 CGM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 CGM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 115 CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . 125 PLL Control Register (PCTL) . . . . . . . . . . . . . . . . . . . . . . . . . 128 PLL Bandwidth Control Register (PBWCR) . . . . . . . . . . . . . . 131 PLL Multiplier Select Register High (PMSH) . . . . . . . . . . . . . 132 PLL Multiplier Select Register Low (PMSL) . . . . . . . . . . . . . . 132 PLL VCO Range Select Register (PMRS) . . . . . . . . . . . . . . . 133 PLL Reference Divider Select Register (PMDS) . . . . . . . . . . 134 PLL Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 SIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .144 CGM Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Interrupt Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Interrupt Recovery Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . 154 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . . 155 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . . 157 Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . . 157 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . 160 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . 160 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Stop Mode Recovery from Interrupt or Break . . . . . . . . . . . . . 161 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . 162 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . 163 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 164
Data Sheet 26 List of Figures
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
List of Figures
Figure 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 11-1 11-2 11-3 11-4 11-5 11-6 11-7 11-8 11-9 11-10 11-11 11-12 11-13 11-14 11-15
Title
Page
Monitor Mode Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Low-Voltage Monitor Mode Entry Flowchart. . . . . . . . . . . . . . 171 Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174 Write Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Stack Pointer at Monitor Mode Entry . . . . . . . . . . . . . . . . . . . 178 Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . .179 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 TIM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .185 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . 190 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . . 196 TIM Counter Registers High (TCNTH) . . . . . . . . . . . . . . . . . . 198 TIM Counter Registers Low (TCNTL) . . . . . . . . . . . . . . . . . . . 198 TIM Counter Modulo Register High (TMODH) . . . . . . . . . . . . 199 TIM Counter Modulo Register Low (TMODL) . . . . . . . . . . . . . 199 TIM Channel 0 Status and Control Register (TSC0) . . . . . . . 200 TIM Channel 1 Status and Control Register (TSC1) . . . . . . . 200 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203 TIM Channel 0 Register High (TCH0H) . . . . . . . . . . . . . . . . . 204 TIM Channel 0 Register Low (TCH0L) . . . . . . . . . . . . . . . . . . 204 TIM Channel 1 Register High (TCH1H) . . . . . . . . . . . . . . . . . 204 TIM Channel 1 Register Low (TCH1L) . . . . . . . . . . . . . . . . . . 204
12-1 Timebase Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 12-2 Timebase Control Register (TBCR) . . . . . . . . . . . . . . . . . . . . 207 13-1 13-2 13-3 13-4 13-5 13-6 13-7 13-8 PWM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 212 PWM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 PWM Output Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 PWM Automatic Phase Control . . . . . . . . . . . . . . . . . . . . . . .215 PWM Control Register (PWMCR). . . . . . . . . . . . . . . . . . . . . . 217 PWM Clock Control Register (PWMCCR) . . . . . . . . . . . . . . . 218 PWM Data Register 0 (PWMDR0) . . . . . . . . . . . . . . . . . . . . . 219 PWM Data Register 1 (PWMDR1) . . . . . . . . . . . . . . . . . . . . . 219
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor List of Figures
Data Sheet 27
List of Figures
Figure Title Page
13-9 PWM Data Register 2 (PWMDR2) . . . . . . . . . . . . . . . . . . . . . 219 13-10 PWM Phase Control Register (PWMPCR) . . . . . . . . . . . . . . . 220 14-1 14-2 14-3 14-4 14-5 15-1 15-2 15-3 15-4 15-5 15-6 15-7 15-8 15-9 15-10 16-1 16-2 16-3 16-4 16-5 16-6 16-7 16-8 16-9 16-10 16-11 16-12 16-13 16-14 16-15 16-16 Analog Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . 222 Analog Module I/O Register Summary . . . . . . . . . . . . . . . . . . 223 Analog Module Control Register (AMCR). . . . . . . . . . . . . . . . 226 Analog Module Gain Control Register (AMGCR) . . . . . . . . . . 227 Analog Module Status and Control Register (AMSCR) . . . . . 229 ADC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 233 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 ADC Status and Control Register (ADSCR) . . . . . . . . . . . . . . 242 ADC Clock Control Register (ADICLK). . . . . . . . . . . . . . . . . . 244 ADRH0 and ADRL0 in 8-Bit Truncated Mode. . . . . . . . . . . . . 246 ADRH0 and ADRL0 in Right Justified Mode. . . . . . . . . . . . . . 246 ADRH0 and ADRL0 in Left Justified Mode . . . . . . . . . . . . . . . 247 ADRH0 and ADRL0 in Left Justified Sign Data Mode . . . . . . 247 ADC Data Register Low 1 to 3 (ADRL1-ADRL3) . . . . . . . . . . 248 ADC Scan Control Register (ADASCR) . . . . . . . . . . . . . . . . . 248 SCI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . .255 SCI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .256 SCI Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257 SCI Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 SCI Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 263 Receiver Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Slow Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 Fast Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 SCI Control Register 1 (SCC1). . . . . . . . . . . . . . . . . . . . . . . . 274 SCI Control Register 2 (SCC2). . . . . . . . . . . . . . . . . . . . . . . . 277 SCI Control Register 3 (SCC3). . . . . . . . . . . . . . . . . . . . . . . . 279 SCI Status Register 1 (SCS1) . . . . . . . . . . . . . . . . . . . . . . . . 282 Flag Clearing Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . . . . 286 SCI Data Register (SCDR) . . . . . . . . . . . . . . . . . . . . . . . . . . .287 SCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . . . . 288
Data Sheet 28 List of Figures
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
List of Figures
Figure 17-1 17-2 17-3 17-4 17-5 17-6 17-7 17-8 17-9 17-10 17-11 17-12 17-13 17-14 17-15 17-16 17-17 17-18 17-19 17-20 18-1 18-2 18-3 18-4 18-5 18-6 18-7 18-8 18-9 18-10 18-11 18-12 18-13 18-14 18-15
Title
Page
MMIIC I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . 294 Multi-Master IIC Bus Transmission Signal Diagram . . . . . . . . 295 Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298 MMIIC Address Register (MMADR) . . . . . . . . . . . . . . . . . . . . 299 MMIIC Control Register 1 (MMCR1). . . . . . . . . . . . . . . . . . . .301 MMIIC Control Register 2 (MMCR2). . . . . . . . . . . . . . . . . . . .303 MMIIC Status Register (MMSR) . . . . . . . . . . . . . . . . . . . . . . . 305 MMIIC Data Transmit Register (MMDTR) . . . . . . . . . . . . . . . 307 MMIIC Data Receive Register (MMDRR) . . . . . . . . . . . . . . . . 308 MMIIC CRC Data Register (MMCRCDR) . . . . . . . . . . . . . . . . 309 MMIIC Frequency Divider Register (MMFDR) . . . . . . . . . . . . 310 Data Transfer Sequences for Master/Slave Transmit/Receive Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 312 Quick Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Send Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Receive Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Write Byte/Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Read Byte/Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Process Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 Block Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 SMBus Protocol Implementation . . . . . . . . . . . . . . . . . . . . . . 316 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .318 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . . 320 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . . 321 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 Port A LED Control Register (LEDA) . . . . . . . . . . . . . . . . . . . 323 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . . 324 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 325 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . . . 327 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 329 Port C I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 Port A LED Control Register (LEDA) . . . . . . . . . . . . . . . . . . . 330 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . . 331 Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . . 332 Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Data Sheet List of Figures 29
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
List of Figures
Figure 19-1 19-2 19-3 19-4 19-5 20-1 20-2 20-3 20-4 Title Page
External Interrupt I/O Register Summary . . . . . . . . . . . . . . . . 336 IRQ1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 IRQ2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 IRQ1 Status and Control Register (INTSCR1) . . . . . . . . . . . . 340 IRQ2 Status and Control Register (INTSCR2) . . . . . . . . . . . . 341 KBI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .344 Keyboard Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . . 345 Keyboard Status and Control Register (KBSCR) . . . . . . . . . . 348 Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . . 349
21-1 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 21-2 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . 354 21-3 COP Control Register (COPCTL) . . . . . . . . . . . . . . . . . . . . . . 355 22-1 LVI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 22-2 LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .358 22-3 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 23-1 23-2 23-3 23-4 23-5 23-6 23-7 Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 365 Break Module I/O Register Summary . . . . . . . . . . . . . . . . . . . 365 Break Status and Control Register (BRKSCR). . . . . . . . . . . . 367 Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . . 368 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . . 368 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . 369 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 370
24-1 RC vs. Bus Frequency (5V @25C) . . . . . . . . . . . . . . . . . . . .378 24-2 RC vs. Bus Frequency (3V @25C) . . . . . . . . . . . . . . . . . . . .379 24-3 MMIIC Signal Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 25-1 48-Pin LQFP (Case #932-02) . . . . . . . . . . . . . . . . . . . . . . . . . 388 25-2 42-Pin SDIP (Case #858-01) . . . . . . . . . . . . . . . . . . . . . . . . . 389 A-1 A-2 MC68HC08SR12 Block Diagram . . . . . . . . . . . . . . . . . . . . . 395 MC68HC08SR12 Memory Map . . . . . . . . . . . . . . . . . . . . . . 396
Data Sheet 30 List of Figures
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
List of Tables
Table 2-1 5-1 6-1 6-2 7-1 7-2 8-1 8-3 8-2 9-1 9-2 9-3 10-1 10-2 10-3 10-4 10-5 10-7 10-6 10-8 10-9
Title
Page
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 CGMXCLK Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 CGMXCLK Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Timebase Module Reference Clock Selection . . . . . . . . . . . . 105 Numeric Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 VPR1 and VPR0 Programming . . . . . . . . . . . . . . . . . . . . . . .130 PRE1 and PRE0 Programming . . . . . . . . . . . . . . . . . . . . . . .130 Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Monitor Mode Signal Requirements and Options . . . . . . . . . . 169 Mode Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . 173 READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . . 175 WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . . 175 IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . . 176 IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . . 176 READSP (Read Stack Pointer) Command . . . . . . . . . . . . . . . 177 RUN (Run User Program) Command . . . . . . . . . . . . . . . . . . . 177
11-1 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 11-2 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor List of Tables Data Sheet 31
List of Tables
Table Title Page
11-3 Mode, Edge, and Level Selection . . . . . . . . . . . . . . . . . . . . . . 202 12-1 Timebase Rate Selection for OSCCLK = 32.768 kHz . . . . . . 207 13-1 PTC0 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 13-2 PWM Counter Clock Prescaler Selection . . . . . . . . . . . . . . . . 219 14-1 14-2 14-3 14-4 15-1 15-2 15-3 15-4 16-1 16-2 16-3 16-4 16-5 16-6 16-7 16-8 Analog Module Power Control . . . . . . . . . . . . . . . . . . . . . . . . 226 Amplifier Channel Select Control bits . . . . . . . . . . . . . . . . . . . 227 Analog Module Gain Values . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Analog Module Clock Divider Select. . . . . . . . . . . . . . . . . . . .229 MUX Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 ADC Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245 Auto-scan Mode Channel Select . . . . . . . . . . . . . . . . . . . . . . 248 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Start Bit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 Data Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265 Stop Bit Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266 Character Format Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 276 SCI Baud Rate Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 SCI Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 SCI Baud Rate Selection Examples . . . . . . . . . . . . . . . . . . . .290
17-1 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 17-2 MMIIC Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 310 18-1 18-2 18-3 18-4 18-5 18-6 18-7 Port Control Register Bits Summary. . . . . . . . . . . . . . . . . . . .319 Port A Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 PTB2 and PTB3 Pin Configurations . . . . . . . . . . . . . . . . . . . .325 Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 PTC0 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Data Sheet 32 List of Tables
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
List of Tables
Table
Title
Page
20-1 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 22-1 LVIOUT Bit Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 24-1 24-2 24-3 24-4 24-5 24-6 24-7 24-8 24-9 24-10 24-11 24-12 24-13 24-14 24-15 24-16 24-17 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 372 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 5V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 374 3V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 376 5V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377 3V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377 5V Oscillator Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 378 3V Oscillator Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 379 5V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 380 3V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 381 Temperature Sensor Electrical Characteristics . . . . . . . . . . . 382 Current Detection Electrical Characteristics . . . . . . . . . . . . . . 382 Two-Stage Amplifier Electrical Characteristics . . . . . . . . . . . . 382 MMIIC DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . .383 MMIIC Interface Input/Output Signal Timing. . . . . . . . . . . . . . 384 FLASH Memory Electrical Characteristics . . . . . . . . . . . . . . . 386
26-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 A-1 A-2 A-3 A-4 Summary of MC68HC08SR12 and MC68HC908SR12 Differences . . . . . . . . . . . . . . . . . . . . . 394 5V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 398 3V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 399 MC68HC08SR12 Order Numbers . . . . . . . . . . . . . . . . . . . . . 401
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor List of Tables
Data Sheet 33
List of Tables
Data Sheet 34 List of Tables
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 1. General Description
1.1 Contents
1.2 1.3 1.4 1.5 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.6 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 1.6.1 Power Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . . . 42 1.6.2 Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . . 42 1.6.3 External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.6.4 External Interrupt Pin (IRQ1) . . . . . . . . . . . . . . . . . . . . . . . .43 1.6.5 Analog Power Supply Pin (VDDA) . . . . . . . . . . . . . . . . . . . . .43 1.6.6 Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.6.7 ADC Voltage Low Reference Pin (VREFL) . . . . . . . . . . . . . . 43 1.6.8 ADC Voltage High Reference Pin (VREFH). . . . . . . . . . . . . . 43 1.6.9 External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . 43 1.6.10 Analog Input Pins (OPIN1/ATD0, OPIN2/ATD1, VSSAM) . . . 44 1.6.11 Port A Input/Output (I/O) Pins (PTA7-PTA0) . . . . . . . . . . . . 44 1.6.12 Port B I/O Pins (PTB6-PTB0) . . . . . . . . . . . . . . . . . . . . . . . 44 1.6.13 Port C I/O Pins (PTC7-PTC0) . . . . . . . . . . . . . . . . . . . . . . . 44 1.6.14 Port D I/O Pins (PTD7/KBI7-PTD0/KBI0) . . . . . . . . . . . . . . 44
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor General Description
Data Sheet 35
General Description 1.2 Introduction
The MC68HC908SR12 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08 Family is based on the customer-specified integrated circuit (CSIC) design strategy. All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types.
1.3 Features
Features of the MC68HC908SR12 include the following: * * * High-performance M68HC08 architecture Fully upward-compatible object code with M6805, M146805, and M68HC05 Families Maximum internal bus frequency: - 8-MHz at 5V operating voltage - 4-MHz at 3V operating voltage * Clock input options: - RC-oscillator - 32kHz crystal-oscillator with 32MHz internal phase-lock-loop * * * 12k-bytes user program FLASH memory with security1 feature 512 bytes of on-chip RAM Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2) with selectable input capture, output compare, and PWM capability on each channel Timebase module 3-channel, 8-bit high speed PWM (125kHz) with independent counters and automatic phase control Serial communications interface module (SCI)
* * *
1. No security feature is absolutely secure. However, Freescale's strategy is to make reading or copying the FLASH difficult for unauthorized users.
Data Sheet 36
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 General Description Freescale Semiconductor
General Description Features
* * * * * * * *
System Management Bus (SMBus), version 1.0/1.1 (Multi-master IIC bus) 14-channel, 10-bit analog-to-digital converter (ADC), with auto-scan mode for 4 channels Current sensor with programmable amplifier Temperature sensor (-20C to +70C) IRQ1 external interrupt pin with integrated pullup IRQ2 external interrupt pin with programmable pullup 8-bit keyboard wakeup port with integrated pullup 31 general-purpose input/output (I/O) pins and 2 dedicated pins: - 31 shared-function I/O pins - Two dedicated analog input pins
* * *
Low-power design (fully static with Stop and Wait modes) Master reset pin (with integrated pullup) and power-on reset System protection features - Optional computer operating properly (COP) reset - Low-voltage detection with optional reset - Illegal opcode detection with reset - Illegal address detection with reset
* *
48-pin low quad flat pack (LQFP) and 42-pin shrink dual-in-line package (SDIP) Specific features of the MC68HC908SR12 in 42-pin SDIP are: - 29 general-purpose l/Os only - 11-channel ADC only
Features of the CPU08 include the following: * * * Enhanced HC05 programming model Extensive loop control functions 16 addressing modes (eight more than the HC05)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor General Description
Data Sheet 37
General Description
* * * * * * * 16-bit Index register and stack pointer Memory-to-memory data transfers Fast 8 x 8 multiply instruction Fast 16/8 divide instruction Binary-coded decimal (BCD) instructions Optimization for controller applications Efficient C language support
1.4 MCU Block Diagram
Figure 1-1 shows the structure of the MC68HC908SR12.
Data Sheet 38
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 General Description Freescale Semiconductor
MONITOR ROM -- 368 BYTES USER FLASH VECTORS -- 38 BYTES OSCILLATORS AND CLOCK GENERATOR MODULE INTERNAL OSCILLATOR OSC1 OSC2 CGMXFC
SERIAL COMMUNICATIONS INTERFACE MODULE
MULTI-MASTER IIC (SMBUS) INTERFACE MODULE
PORTB
DDRB
X-TAL OSCILLATOR PHASE-LOCKED LOOP 8-BIT KEYBOARD INTERRUPT MODULE
* RST * IRQ1 ** IRQ2 OPIN1/ATD0
# OPIN2/ATD1
PORTD
DDRD
SYSTEM INTEGRATION MODULE EXTERNAL IRQ MODULE ANALOG MODULE 10-BIT ANALOG-TO-DIGITAL CONVERTER MODULE
COMPUTER OPERATING PROPERLY MODULE
PORTC
DDRC
Freescale Semiconductor General Description 39
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Data Sheet
INTERNAL BUS M68HC08 CPU PORTA DDRA CPU REGISTERS ARITHMETIC/LOGIC UNIT (ALU) 2-CHANNEL TIMER INTERFACE MODULE 1 PTA7/T1CH1 PTA6/T1CH0 PTA5/ATD7 - PTA0/ATD2
CONTROL AND STATUS REGISTERS -- 96 BYTES USER FLASH -- 12,288 BYTES USER RAM -- 512 BYTES
2-CHANNEL TIMER INTERFACE MODULE 2 PTB6/IRQ2 PTB5/T2CH1 PTB4/T2CH0 PTB3//SCL1/RxD PTB2/SDA1/TxD PTB1/SCL0 PTB0/SDA0
TIMEBASE MODULE
RC OSCILLATOR
PULSE WIDTH MODULATOR MODULE
PTC7/ATD12 # PTC6/ATD11 # PTC5/ATD10 PTC4/ATD9 PTC3/ATD8 PTC2/PWM2 PTC1/PWM1 PTC0/PWM0/CD
PTD7/KBI7 - PTD0/KBI0 ***
LOW-VOLTAGE INHIBIT MODULE
VSSAM VREFH VREFL VDD VSS VDDA VSSA
POWER-ON RESET MODULE * Pin contains integrated pullup device. ** Pin contains configurable pullup device. *** Pin contains integrated pullup device for KBI functions. Pin is open-drain when configured as output. High current drive pin (for LED). # Pin not bonded on 42-pin SDIP.
General Description MCU Block Diagram
POWER
Figure 1-1. MC68HC908SR12 Block Diagram
General Description 1.5 Pin Assignments
PTC5/ATD10
PTC6/ATD11
PTC4/ATD9
PTA5/ATD7
PTA4/ATD6
PTA3/ATD5
PTA2/ATD4 38
47
46
45
44
43
42
41
40
39
37 PTA1/ATD3 36 VREFH
48 CGMXFC
VDDA
VSSA
PTC3/ATD8 1 NC PTD0/KBI0 VDD OSC1 OSC2 VSS PTD1/KBI1 IRQ1 PTD2/KBI2 RST PTD3/KBI3 12 PTB0/SDA0 13 2 3 4 5 6 7 8 9 10 11
NC
35 34 33 32 31 30 29 28 27 26 14 15 16 17 18 19 20 21 22 23
VREFL OPIN2/ATD1 PTC7/ATD12 PTA0/ATD2 VSSAM OPIN1/ATD0 PTB4/T2CH0 PTB5/T2CH1 PTB6/IRQ2 PTA6/T1CH0
25 PTD7/KBI7
PTC0/PWM0/CD
PTB2/SDA1/TxD
PTB3/SCL1/RxD
PTC1/PWM1
PTC2/PWM2
PTB1/SCL0
PTD4/KBI4
PTD5/KBI5
PTD6/KBI6
NC: No connection
Figure 1-2. 48-Pin LQFP Pin Assignments
Data Sheet 40
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 General Description Freescale Semiconductor
PTA7/T1CH1
NC 24
General Description Pin Functions
VDDA PTC5/ATD10 PTC4/ATD9 PTA5/ATD7 CGMXFC PTC3/ATD8 PTD0/KBI0 VDD OSC1 OSC2 VSS PTD1/KBI1 IRQ1 PTD2/KBI2 RST PTD3/KBI3 PTB0/SDA0 PTB1/SCL0 PTB2/SDA1/TxD PTB3/SCL1/RxD PTD4/KBI4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22
VSSA PTA4/ATD6 PTA3/ATD5 PTA2/ATD4 PTA1/ATD3 VREFH VREFL PTA0/ATD2 VSSAM OPIN1/ATD0 PTB4/T2CH0 PTB5/T2CH1 PTB6/IRQ2 PTA6/T1CH0 PTD7/KBI7 PTA7/T1CH1 PTC2/PWM2 PTC1/PWM1 PTC0/PWM0/CD PTD6/KBI6 PTD5/KBI5
Pins not available on 42-pin package OPIN2/ATD1 PTC6/ATD11 PTC7/ATD12
Internal connection Unconnected Unconnected Unconnected
Figure 1-3. 42-Pin SDIP Pin Assignment
1.6 Pin Functions
Description of pin functions are provided here.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor General Description
Data Sheet 41
General Description
1.6.1 Power Supply Pins (VDD and VSS) VDD and VSS are the power supply and ground pins. The MCU operates from a single power supply. Fast signal transitions on MCU pins place high, short-duration current demands on the power supply. To prevent noise problems, take special care to provide power supply bypassing at the MCU as Figure 1-4 shows. Place the C1 bypass capacitor as close to the MCU as possible. Use a high-frequency-response ceramic capacitor for C1. C2 is an optional bulk current bypass capacitor for use in applications that require the port pins to source high current levels.
MCU
VDD VSS
C1 0.1 F
+ C2
VDD
NOTE: Component values shown represent typical applications.
Figure 1-4. Power Supply Bypassing VSS must be grounded for proper MCU operation.
1.6.2 Oscillator Pins (OSC1 and OSC2) The OSC1 and OSC2 pins are the connections for the on-chip oscillator circuit. See Section 7. Oscillator (OSC) and Section 8. Clock Generator Module (CGM).
Data Sheet 42
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 General Description Freescale Semiconductor
General Description Pin Functions
1.6.3 External Reset Pin (RST) A logic 0 on the RST pin forces the MCU to a known start-up state. RST is bidirectional, allowing a reset of the entire system. It is driven low when any internal reset source is asserted. This pin contains an internal pullup resistor. See Section 9. System Integration Module (SIM).
1.6.4 External Interrupt Pin (IRQ1) IRQ1 is an asynchronous external interrupt pin. This pin contains an internal pullup resistor. See Section 19. External Interrupt (IRQ).
1.6.5 Analog Power Supply Pin (VDDA) VDDA is the power supply pin for the analog circuits of the MCU.
1.6.6 Analog Ground Pin (VSSA) VSSA is the power supply ground pin for the analog circuits of the MCU. It should be decoupled as per the VSS digital ground pin.
1.6.7 ADC Voltage Low Reference Pin (VREFL) VREFL is the voltage input pin for the ADC voltage low reference. See Section 15. Analog-to-Digital Converter (ADC).
1.6.8 ADC Voltage High Reference Pin (VREFH) VREFH is the voltage input pin for the ADC voltage high reference. See Section 15. Analog-to-Digital Converter (ADC).
1.6.9 External Filter Capacitor Pin (CGMXFC) CGMXFC is an external filter capacitor connection for the CGM. See Section 8. Clock Generator Module (CGM).
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor General Description
Data Sheet 43
General Description
1.6.10 Analog Input Pins (OPIN1/ATD0, OPIN2/ATD1, VSSAM) OPIN1/ATD0 and OPIN2/ATD1 are input pins to the analog module and ADC and VSSAM is the negative reference input. See Section 14. Analog Module and Section 15. Analog-to-Digital Converter (ADC). 1.6.11 Port A Input/Output (I/O) Pins (PTA7-PTA0) PTA7-PTA0 are special function, bidirectional port pins. PTA7/T1CH1-PTA6/T1CH0 are shared with the TIM1, and PTA5/ATD7-PTA0/ATD2 are shared with the ADC. See Section 18. Input/Output (I/O) Ports, Section 11. Timer Interface Module (TIM), and Section 15. Analog-to-Digital Converter (ADC). 1.6.12 Port B I/O Pins (PTB6-PTB0) PTB6-PTB0 are special function, bidirectional port pins. PTB6/IRQ2 is shared with the IRQ2 input, PTB5/T2CH1-PTB4/T2CH0 are shared with the TIM2, PTB3/SCL1/RxD-PTB2/SDA1/TxD are shared with the MMIIC and SCI, and PTB1/SCL0-PTB0/SDA0 are shared with the MMIIC. See Section 18. Input/Output (I/O) Ports, Section 19. External Interrupt (IRQ), Section 11. Timer Interface Module (TIM), Section 16. Serial Communications Interface (SCI), and Section 17. Multi-Master IIC Interface (MMIIC). 1.6.13 Port C I/O Pins (PTC7-PTC0) PTC7-PTC0 are special function, bidirectional port pins. PTC7/ATD12-PTC3/ATD8 are shared with the ADC, PTC2/PWM2-PTC1/PWM1 are shared with the PWM, and PTC0/PWM0/CD is shared with the PWM and analog module. See Section 18. Input/Output (I/O) Ports, Section 15. Analog-to-Digital Converter (ADC), Section 13. Pulse Width Modulator (PWM), and Section 14. Analog Module. 1.6.14 Port D I/O Pins (PTD7/KBI7-PTD0/KBI0) PTD7-PTD0 are general-purpose bidirectional port pins with keyboard wakeup function. See Section 18. Input/Output (I/O) Ports and Section 20. Keyboard Interrupt Module (KBI).
Data Sheet 44 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 General Description Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 2. Memory Map
2.1 Contents
2.2 2.3 2.4 2.5 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 45 Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2 Introduction
The CPU08 can address 64k-bytes of memory space. The memory map, shown in Figure 2-1, includes: * * * * 12,288 bytes of user FLASH memory 512 bytes of random-access memory (RAM) 38 bytes of user-defined vectors 368 bytes of monitor ROM
2.3 Unimplemented Memory Locations
Accessing an unimplemented location can cause an illegal address reset. In the memory map (Figure 2-1) and in register figures in this document, unimplemented locations are shaded.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Memory Map
Data Sheet 45
Memory Map 2.4 Reserved Memory Locations
Accessing a reserved location can have unpredictable effects on MCU operation. In the Figure 2-1 and in register figures in this document, reserved locations are marked with the word Reserved or with the letter R.
2.5 Input/Output (I/O) Section
Most of the control, status, and data registers are in the zero page $0000-$005F. Additional I/O registers have the following addresses: * * * * * * * * * * * * * * * * * $FE00; SIM break status register, SBSR $FE01; SIM reset status register, SRSR $FE03; SIM break flag control register, SBFCR $FE04; Interrupt status register 1, INT1 $FE05; Interrupt status register 2, INT2 $FE06; Interrupt status register 3, INT3 $FE07; Reserved $FE08; FLASH control register, FLCR $FE09; FLASH block protect register, FLBPR $FE0A; Reserved $FE0B; Reserved $FE0C; break address register high, BRKH $FE0D; break address register low, BRKL $FE0E; break status and control register, BRKSCR $FE0F; LVI status register, LVISR $FF80; Mask option register, MOR $FFFF; COP control register, COPCTL
Data registers are shown in Figure 2-2, Table 2-1 is a list of vector locations.
Data Sheet 46 Memory Map
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Memory Map Input/Output (I/O) Section
$0000 $005F $0060 $025F $0260 $BFFF $C000 $EFFF $F000 $FDFF $FE00 $FE01 $FE02 $FE03 $FE04 $FE05 $FE06 $FE07 $FE08 $FE09 $FE0A $FE0B $FE0C $FE0D $FE0E $FE0F $FE10 $FF7F $FF80 $FF81 $FFD9 $FFDA $FFFF
I/O Registers 96 Bytes RAM 512 Bytes Unimplemented 48,544 Bytes FLASH Memory 12,288 Bytes Unimplemented 3,584 Bytes SIM Break Status Register (SBSR) SIM Reset Status Register (SRSR) Reserved SIM Break Flag Control Register (SBFCR) Interrupt Status Register 1 (INT1) Interrupt Status Register 2 (INT2) Interrupt Status Register 3 (INT3) Reserved FLASH Control Register (FLCR) FLASH Block Protect Register (FLBPR) Reserved Reserved Break Address Register High (BRKH) Break Address Register Low (BRKL) Break Status and Control Register (BRKSCR) LVI Status Register (LVISR) Monitor ROM 368 Bytes Mask Option Register Reserved 89 Bytes FLASH Vectors 38 Bytes
Figure 2-1. Memory Map
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Memory Map Data Sheet 47
Memory Map
Addr.
Register Name Read: Port A Data Register Write: (PTA) Reset: Read: Port B Data Register Write: (PTB) Reset: Read: Port C Data Register Write: (PTC) Reset: Read: Port D Data Register Write: (PTD) Reset:
Bit 7 PTA7 U 0
6 PTA6 U PTB6 U PTC6 U PTD6 U DDRA6 0 DDRB6 0 DDRC6 0 DDRD6 0
5 PTA5 U PTB5 U PTC5 U PTD5 U DDRA5 0 DDRB5 0 DDRC5 0 DDRD5 0
4 PTA4 U PTB4 U PTC4 U PTD4 U DDRA4 0 DDRB4 0 DDRC4 0 DDRD4 0
3 PTA3 U PTB3 U PTC3 U PTD3 U DDRA3 0 DDRB3 0 DDRC3 0 DDRD3 0
2 PTA2 U PTB2 U PTC2 U PTD2 U DDRA2 0 DDRB2 0 DDRC2 0 DDRD2 0
1 PTA1 U PTB1 U PTC1 U PTD1 U DDRA1 0 DDRB1 0 DDRC1 0 DDRD1 0
Bit 0 PTA0 U PTB0 U PTC0 U PTD0 U DDRA0 0 DDRB0 0 DDRC0 0 DDRD0 0
$0000
$0001
0 PTC7 U PTD7 U
$0002
$0003
Read: DDRA7 Data Direction Register A $0004 Write: (DDRA) Reset: 0 Read: Data Direction Register B $0005 Write: (DDRB) Reset: 0
0
Read: DDRC7 Data Direction Register C $0006 Write: (DDRC) Reset: 0 Read: DDRD7 Data Direction Register D $0007 Write: (DDRD) Reset: 0 Read: $0008 Unimplemented Write: Reset: Read: $0009 Unimplemented Write: Reset:
U = Unaffected
X = Indeterminate
= Unimplemented
R
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 12)
Data Sheet 48 Memory Map MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Memory Map Input/Output (I/O) Section
Addr.
Register Name Read:
Bit 7
6
5
4
3
2
1
Bit 0
$000A
Unimplemented Write: Reset: Read:
$000B
Unimplemented Write: Reset: Read: Port-A LED Control Register Write: (LEDA) Reset: Read: Port-C LED Control Register Write: (LEDC) Reset: Read: Analog Module Control Register Write: (AMCR) Reset: 0 0 LEDA5 0 LEDC5 0 OPCH1 0 GAINB1 0 0 OPIFR U 0 0 0 LEDA4 0 LEDC4 0 OPCH0 0 GAINB0 0 OPIF LEDA3 0 LEDC3 0 AMIEN 0 GAINA3 0 0 LEDA2 0 0 LEDA1 0 0 LEDA0 0 0
$000C
0 LEDC7 0 PWR1 0
0 LEDC6 0 PWR0 0 GAINB2 0
$000D
0 DO2 0 GAINA2 0 DOF
0 DO1 0 GAINA1 0 0 CDIFR U
0 DO0 0 GAINA0 0 CDIF
$000E
$000F
Read: Analog Module Gain GAINB3 Control Register Write: (AMGCR) Reset: 0
Read: Analog Module Status and AMCDIV1 AMCDIV0 $0010 Control Register Write: (AMSCR) Reset: 0 0 Read: $0011 Unimplemented Write: Reset: Read: $0012 Unimplemented Write: Reset: Read: LOOPS SCI Control Register 1 Write: (SCC1) Reset: 0 ENSCI 0
0
$0013
TXINV 0
M 0
WAKE 0
ILTY 0
PEN 0
PTY 0
U = Unaffected
X = Indeterminate
= Unimplemented
R
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 12)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Memory Map Data Sheet 49
Memory Map
Addr.
Register Name Read: SCI Control Register 2 Write: (SCC2) Reset: Read: SCI Control Register 3 Write: (SCC3) Reset: Read: SCI Status Register 1 Write: (SCS1) Reset: Read: SCI Status Register 2 Write: (SCS2) Reset: Read: SCI Data Register Write: (SCDR) Reset: Read: SCI Baud Rate Register Write: (SCBR) Reset: Keyboard Status and Read: Control Register Write: (KBSCR) Reset:
Bit 7 SCTIE 0 R8
6 TCIE 0 T8 U TC
5 SCRIE 0 DMARE 0 SCRF
4 ILIE 0 DMATE 0 IDLE
3 TE 0 ORIE 0 OR
2 RE 0 NEIE 0 NF
1 RWU 0 FEIE 0 FE
Bit 0 SBK 0 PEIE 0 PE
$0014
$0015
U SCTE
$0016
1 0
1 0
0 0
0 0
0 0
0 0
0 BKF
0 RPF
$0017
0 R7 T7 U 0
0 R6 T6 U 0
0 R5 T5 U SCP1 0 0
0 R4 T4 U SCP0 0 0
0 R3 T3 U R
0 R2 T2 U SCR2 0
0 R1 T1 U SCR1 0 IMASKK 0 KBIE1 0 IMASK2 0
0 R0 T0 U SCR0 0 MODEK 0 KBIE0 0 MODE2 0
$0018
$0019
0 0
0 0
KEYF
0 ACKK
$001A
0 KBIE7 0 0
0 KBIE6 0 PTBPUE6 0 STOP_ RCLKEN 0
0 KBIE5 0 0
0 KBIE4 0 0
0 KBIE3 0 IRQ2F
0 KBIE2 0 0 ACK2
Read: Keyboard Interrupt Enable $001B Register Write: (KBIER) Reset: Read: IRQ2 Status and Control Register Write: (INTSCR2) Reset:
$001C
0
0
0
0
0 0
$001D
Read: STOP_ Configuration Register 2 Write: ICLKEN (CONFIG2) Reset: 0
STOP_ OSCCLK1 OSCCLK0 XCLKEN 0 0 0
CDOEN SCIBDSRC 0 0
0
U = Unaffected
X = Indeterminate
= Unimplemented
R
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 12)
Data Sheet 50 Memory Map MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Memory Map Input/Output (I/O) Section
Addr.
Register Name Read: IRQ1 Status and Control Register Write: (INTSCR1) Reset:
Bit 7 0
6 0
5 0
4 0
3 IRQ1F
2 0 ACK1
1 IMASK1 0 STOP 0
Bit 0 MODE1 0 COPD 0
$001E
0
0
0
0
0
0 SSREC 0
$001F
Read: COPRS Configuration Register 1 Write: (CONFIG1) Reset: 0
LVISTOP LVIRSTD LVIPWRD LVI5OR3 0 0 0 0
One-time writable register after each reset. Read: Timer 1 Status and Control Register Write: (T1SC) Reset: Read: Timer 1 Counter Register High Write: (T1CNTH) Reset: Read: Timer 1 Counter Register Low Write: (T1CNTL) Reset: Read: Timer 1 Counter Modulo Register High Write: (T1MODH) Reset: Read: Timer 1 Counter Modulo Register Low Write: (T1MODL) Reset: TOF 0 0 Bit 15 TOIE 0 14 TSTOP 1 13 0 TRST 0 12 0 11 0 PS2 0 10 PS1 0 9 PS0 0 Bit 8
$0020
$0021
0 Bit 7
0 6
0 5
0 4
0 3
0 2
0 1
0 Bit 0
$0022
0 Bit 15 1 Bit 7 1 CH0F 0 0 Bit 15 X
0 14 1 6 1 CH0IE 0 14 X
0 13 1 5 1 MS0B 0 13 X
0 12 1 4 1 MS0A 0 12 X
0 11 1 3 1 ELS0B 0 11 X
0 10 1 2 1 ELS0A 0 10 X
0 9 1 1 1 TOV0 0 9 X
0 Bit 8 1 Bit 0 1 CH0MAX 0 Bit 8 X
$0023
$0024
Read: Timer 1 Channel 0 Status $0025 and Control Register Write: (T1SC0) Reset: Read: Timer 1 Channel 0 Register High Write: (T1CH0H) Reset:
$0026
U = Unaffected
X = Indeterminate
= Unimplemented
R
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 12)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Memory Map
Data Sheet 51
Memory Map
Addr.
Register Name Read: Timer 1 Channel 0 Register Low Write: (T1CH0L) Reset:
Bit 7 Bit 7 X CH1F 0 0 Bit 15 X Bit 7 X TOF 0 0 Bit 15
6 6 X CH1IE 0 14 X 6 X TOIE 0 14
5 5 X 0
4 4 X MS1A 0 12 X 4 X 0 TRST 0 12
3 3 X ELS1B 0 11 X 3 X 0
2 2 X ELS1A 0 10 X 2 X PS2 0 10
1 1 X TOV1 0 9 X 1 X PS1 0 9
Bit 0 Bit 0 X CH1MAX 0 Bit 8 X Bit 0 X PS0 0 Bit 8
$0027
Read: Timer 1 Channel 1 Status $0028 and Control Register Write: (T1SC1) Reset: Read: Timer 1 Channel 1 Register High Write: (T1CH1H) Reset: Read: Timer 1 Channel 1 Register Low Write: (T1CH1L) Reset: Read: Timer 2 Status and Control Register Write: (T2SC) Reset: Read: Timer 2 Counter Register High Write: (T2CNTH) Reset: Read: Timer 2 Counter Register Low Write: (T2CNTL) Reset: Read: Timer 2 Counter Modulo Register High Write: (T2MODH) Reset: Read: Timer 2 Counter Modulo Register Low Write: (T2MODL) Reset:
0 13 X 5 X TSTOP 1 13
$0029
$002A
$002B
0 11
$002C
0 Bit 7
0 6
0 5
0 4
0 3
0 2
0 1
0 Bit 0
$002D
0 Bit 15 1 Bit 7 1 CH0F 0 0
0 14 1 6 1 CH0IE 0
0 13 1 5 1 MS0B 0
0 12 1 4 1 MS0A 0
0 11 1 3 1 ELS0B 0
0 10 1 2 1 ELS0A 0
0 9 1 1 1 TOV0 0
0 Bit 8 1 Bit 0 1 CH0MAX 0
$002E
$002F
Read: Timer 2 Channel 0 Status $0030 and Control Register Write: (T2SC0) Reset:
U = Unaffected
X = Indeterminate
= Unimplemented
R
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 12)
Data Sheet 52 Memory Map MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Memory Map Input/Output (I/O) Section
Addr.
Register Name Read: Timer 2 Channel 0 Register High Write: (T2CH0H) Reset: Read: Timer 2 Channel 0 Register Low Write: (T2CH0L) Reset:
Bit 7 Bit 15 X Bit 7 X CH1F 0 0 Bit 15 X Bit 7 X PLLIE 0 AUTO 0 0
6 14 X 6 X CH1IE 0 14 X 6 X PLLF
5 13 X 5 X 0
4 12 X 4 X MS1A 0 12 X 4 X BCS 0 0
3 11 X 3 X ELS1B 0 11 X 3 X PRE1 0 0
2 10 X 2 X ELS1A 0 10 X 2 X PRE0 0 0
1 9 X 1 X TOV1 0 9 X 1 X VPR1 0 0
Bit 0 Bit 8 X Bit 0 X CH1MAX 0 Bit 8 X Bit 0 X VPR0 0 R
$0031
$0032
Read: Timer 2 Channel 1 Status $0033 and Control Register Write: (T2SC1) Reset: Read: Timer 2 Channel 1 Register High Write: (T2CH1H) Reset: Read: Timer 2 Channel 1 Register Low Write: (T2CH1L) Reset: Read: PLL Control Register Write: (PTCL) Reset: Read: PLL Bandwidth Control Register Write: (PBWC) Reset: Read: PLL Multiplier Select Register High Write: (PMSH) Reset: Read: PLL Multiplier Select Register Low Write: (PMSL) Reset: Read: PLL VCO Range Select Register Write: (PMRS) Reset:
0 13 X 5 X PLLON 1 ACQ 0 0
$0034
$0035
$0036
0 LOCK
$0037
0 0
0 0
0 MUL11 0 MUL3 0 VRS3 0
0 MUL10 0 MUL2 0 VRS2 0
0 MUL9 0 MUL1 0 VRS1 0 MUL8 0 MUL0 0 VRS0 0
$0038
0 MUL7 0 VRS7 0
0 MUL6 1 VRS6 1
0 MUL5 0 VRS5 0
0 MUL4 0 VRS4 0
$0039
$003A
U = Unaffected
X = Indeterminate
= Unimplemented
R
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 12)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Memory Map Data Sheet 53
Memory Map
Addr.
Register Name Read: PLL Reference Divider Select Register Write: (PMDS) Reset: Read:
Bit 7 0
6 0
5 0
4 0
3 RDS3 0
2 RDS2 0
1 RDS1 0
Bit 0 RDS0 1
$003B
0
0
0
0
$003C
Unimplemented Write: Reset: Read:
$003D
Unimplemented Write: Reset: Read:
$003E
Unimplemented Write: Reset: Read:
$003F
Unimplemented Write: Reset: Read:
$0040
Unimplemented Write: Reset: Read:
$0041
Unimplemented Write: Reset: Read:
$0042
Unimplemented Write: Reset: Read:
$0043
Unimplemented Write: Reset: Read:
$0044
Unimplemented Write: Reset:
U = Unaffected
X = Indeterminate
= Unimplemented
R
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 12)
Data Sheet 54 Memory Map MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Memory Map Input/Output (I/O) Section
Addr.
Register Name Read:
Bit 7
6
5
4
3
2
1
Bit 0
$0045
Unimplemented Write: Reset: Read: Timebase Control Register Write: (TBCR) Reset: Read: TBIF TBR2 0 TBR1 0 TBR0 0 0 TACK 0 TBIE 0 TBON 0 R
$0046
0
$0047
Unimplemented Write: Reset: Read: MMAD7 MMIIC Address Register Write: (MMADR) Reset: 1 MMEN 0 MMAD6 0 MMIEN 0 MMAD5 1 0
MMCLRBB
$0048
MMAD4 0 0
MMAD3 0
MMAD2 0
MMAD1 0
MMCRCBYTE
MMEXTAD
0 SDASCL1 0
MMCRCEF
Read: MMIIC Control Register 1 $0049 Write: (MMCR1) Reset:
MMTXAK REPSEN 0 MMRW 0 0 0
0 MMBB
0 MMAST 0
0 0
Read: MMALIF MMNAKIF MMIIC Control Register 2 $004A Write: 0 0 (MMCR2) Reset: 0 0 Read: MMRXIF MMIIC Status Register Write: 0 (MMSR) Reset: 0 Read: MMIIC Data Transmit MMTD7 Register Write: (MMDTR) Reset: 0 Read: MMRD7 MMIIC Data Receive Register Write: (MDDRR) Reset: 0 MMTXIF 0 0 MMTD6 0 MMRD6
0
0
0
Unaffected
MMATCH MMSRW MMRXAK MMCRCBF MMTXBE MMRXBF
$004B
0 MMTD5 0 MMRD5
0 MMTD4 0 MMRD4
1 MMTD3 0 MMRD3
0 MMTD2 0 MMRD2
1 MMTD1 0 MMRD1
0 MMTD0 0 MMRD0
$004C
$004D
0
0
0
0
0
0
0
Read: MMCRCD7 MMCRCD6 MMCRCD5 MMCRCD4 MMCRCD3 MMCRCD2 MMCRCD1 MMCRCD0 MMIIC CRC Data Register Write: $004E (MMCRDR) Reset: 0 0 0 0 0 0 0 0
U = Unaffected
X = Indeterminate
= Unimplemented
R
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 12)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Memory Map Data Sheet 55
Memory Map
Addr.
Register Name
Bit 7 0
6 0
5 0
4 0
3 0
2 MMBR2 1 R
1 MMBR1 0 R
Bit 0 MMBR0 0 R
Read: MMIIC Frequency Divider $004F Register Write: (MMFDR) Reset: Read: $0050 Reserved Write: Reset:
0 R
0 R
0 R
0 R
0 R
$0051
Read: PWMEN2 PWMEN1 PWMEN0 PWM Control Register Write: (PWMCR) Reset: 0 0 0 Read: PWM Clock Control PCLKSEL Register Write: (PWMCCR) Reset: 0 0 0
0
0
PCH2 0 0
PCH1 0 PCLK1 0
PCH0 0 PCLK0 0
0 0
0 0
$0052
0
0
0
0
0
$0053
Read: 0PWMD7 0PWMD6 0PWMD5 0PWMD4 0PWMD3 0PWMD2 0PWMD1 0PWMD0 PWM Data Register 0 Write: (PWMDR0) Reset: 0 0 0 0 0 0 0 0 Read: 1PWMD7 1PWMD6 1PWMD5 1PWMD4 1PWMD3 1PWMD2 1PWMD1 1PWMD0 PWM Data Register 1 Write: (PWMDR1) Reset: 0 0 0 0 0 0 0 0 Read: 2PWMD7 2PWMD6 2PWMD5 2PWMD4 2PWMD3 2PWMD2 2PWMD1 2PWMD0 PWM Data Register 2 Write: (PWMDR2) Reset: 0 0 0 0 0 0 0 0 Read: PWM Phase Control Register Write: (PWMPCR) Reset: Read: ADC Status and Control Register Write: (ADSCR) Reset: Read: ADC Clock Control Register Write: (ADICLK) Reset: PHEN 0 COCO PHD6 0 AIEN 0 ADIV1 0 PHD5 0 ADCO 0 ADIV0 0 PHD4 0 ADCH4 1 ADICLK 0 PHD3 0 ADCH3 1 MODE1 0 PHD2 0 ADCH2 1 MODE0 1 PHD1 0 ADCH1 1 0 PHD0 0 ADCH0 1 0 R 0 0
$0054
$0055
$0056
$0057
0 ADIV2 0
$0058
U = Unaffected
X = Indeterminate
= Unimplemented
R
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 9 of 12)
Data Sheet 56 Memory Map MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Memory Map Input/Output (I/O) Section
Addr.
Register Name
Bit 7 ADx R 0 ADx R 0 AD9 R 0 AD9 R 0 AD9 R 0 0
6 ADx R 0 ADx R 0 AD8 R 0 AD8 R 0 AD8 R 0 0
5 ADx R 0 ADx R 0 AD7 R 0 AD7 R 0 AD7 R 0 0
4 ADx R 0 ADx R 0 AD6 R 0 AD6 R 0 AD6 R 0 0
3 ADx R 0 ADx R 0 AD5 R 0 AD5 R 0 AD5 R 0 0
2 ADx R 0 ADx R 0 AD4 R 0 AD4 R 0 AD4 R 0 AUTO1 0
1 ADx R 0 ADx R 0 AD3 R 0 AD3 R 0 AD3 R 0 AUTO0 0
Bit 0 ADx R 0 ADx R 0 AD2 R 0 AD2 R 0 AD2 R 0 ASCAN 0
Read: ADC Data Register High 0 $0059 Write: (ADRH0) Reset: Read: ADC Data Register Low 0 $005A Write: (ADRL0) Reset: Read: ADC Data Register Low 1 $005B Write: (ADRL1) Reset: Read: ADC Data Register Low 2 $005C Write: (ADRL3) Reset: Read: ADC Data Register Low 3 $005D Write: (ADRL3) Reset: Read: ADC Auto-scan Control Register Write: (ADASCR) Reset: Read: $005F Unimplemented Write: Reset:
$005E
0
0
0
0
0
Read: SIM Break Status Register $FE00 Write: (SBSR) Reset: Note: Writing a logic 0 clears SBSW. Read: SIM Reset Status Register $FE01 Write: (SRSR) POR:
R
R
R
R
R
R
SBSW Note 0
R
POR
PIN
COP
ILOP
ILAD
0
LVI
0
1
0
0
0
0
0
0
0
U = Unaffected
X = Indeterminate
= Unimplemented
R
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 10 of 12)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Memory Map
Data Sheet 57
Memory Map
Addr.
Register Name Read:
Bit 7 R
6 R
5 R
4 R
3 R
2 R
1 R
Bit 0 R
$FE02
Reserved Write: Reset: Read: SIM Break Flag Control Register Write: (SBFCR) Reset:
$FE03
BCFE 0 IF6 R 0 IF14 R 0 0 R 0 R
R
R
R
R
R
R
R
Read: Interrupt Status Register 1 Write: $FE04 (INT1) Reset: Read: Interrupt Status Register 2 $FE05 Write: (INT2) Reset: Read: Interrupt Status Register 3 $FE06 Write: (INT3) Reset: Read: $FE07 Reserved Write: Reset: Read: FLASH Control Register Write: (FLCR) Reset: Read: FLASH Block Protect Write: Register (FLBPR) Reset: Read: $FE0A Reserved Write: Reset: Read: $FE0B Reserved Write: Reset:
IF5 R 0 IF13 R 0 0 R 0 R
IF4 R 0 IF12 R 0 0 R 0 R
IF3 R 0 IF11 R 0 0 R 0 R
IF2 R 0 IF10 R 0 0 R 0 R
IF1 R 0 IF9 R 0 IF17 R 0 R
0 R 0 IF8 R 0 IF16 R 0 R
0 R 0 IF7 R 0 IF15 R 0 R
0
0
0
0
$FE08
HVEN 0 BPR3 0 R
MASS 0 BPR2 0 R
ERASE 0 BPR1 0 R
PGM 0 BPR0 0 R
0 BPR7 0 R
0 BPR6 0 R
0 BPR5 0 R
0 BPR4 0 R
$FE09
R
R
R
R
R
R
R
R
U = Unaffected
X = Indeterminate
= Unimplemented
R
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 11 of 12)
Data Sheet 58 Memory Map MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Memory Map Input/Output (I/O) Section
Addr.
Register Name Read: Break Address Register High Write: (BRKH) Reset: Read: Break Address Register Low Write: (BRKL) Reset:
Bit 7 Bit 15 0 Bit 7 0 BRKE 0
6 14 0 6 0 BRKA 0 0
5 13 0 5 0 0
4 12 0 4 0 0
3 11 0 3 0 0
2 10 0 2 0 0
1 9 0 1 0 0
Bit 0 Bit 8 0 Bit 0 0 0
$FE0C
$FE0D
Read: Break Status and Control $FE0E Register Write: (BRKSCR) Reset:
0 0
0 0
0 0
0 0
0 0
0 0
Read: LVIOUT Low-Voltage Inhibit Status $FE0F Register Write: (LVISR) Reset: 0
0
0
0
0
0
0
0
$FF80
Mask Option Register Read: OSCSEL1 OSCSEL0 (MOR)* Write: Erased: Reset: 1 U 1 U
R 1 U
R 1 U
R 1 U
R 1 U
R 1 U
R 1 U
* MOR is a non-volatile FLASH register; write by programming.
$FFFF
Read: COP Control Register Write: (COPCTL) Reset:
Low byte of reset vector Writing clears COP counter (any value) U U U U U U U U
U = Unaffected
X = Indeterminate
= Unimplemented
R
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 12 of 12)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Memory Map
Data Sheet 59
Memory Map
Table 2-1. Vector Addresses
Vector Priority Lowest Vector IF17 IF16 IF15 IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 IF6 IF5 IF4 IF3 IF2 IF1 -- -- Address $FFDA $FFDB $FFDC $FFDD $FFDE $FFDF $FFE0 $FFE1 $FFE2 $FFE3 $FFE4 $FFE5 $FFE6 $FFE7 $FFE8 $FFE9 $FFEA $FFEB $FFEC $FFED $FFEE $FFEF $FFF0 $FFF1 $FFF2 $FFF3 $FFF4 $FFF5 $FFF6 $FFF7 $FFF8 $FFF9 $FFFA $FFFB $FFFC $FFFD $FFFE $FFFF Vector Timebase Module Interrupt Vector (High) Timebase Module Interrupt Vector (Low) Analog Module Interrupt Vector (High) Analog Module Interrupt Vector (Low) ADC Conversion Complete Vector (High) ADC Conversion Complete Vector (Low) Keyboard Vector (High) Keyboard Vector (Low) SCI Transmit Vector (High) SCI Transmit Vector (Low) SCI Receive Vector (High) SCI Receive Vector (Low) SCI Error Vector (High) SCI Error Vector (Low) MMIIC Interrupt Vector (High) MMIIC Interrupt Vector (Low) TIM2 Overflow Vector (High) TIM2 Overflow Vector (Low) TIM2 Channel 1 Vector (High) TIM2 Channel 1 Vector (Low) TIM2 Channel 0 Vector (High) TIM2 Channel 0 Vector (Low) TIM1 Overflow Vector (High) TIM1 Overflow Vector (Low) TIM1 Channel 1 Vector (High) TIM1 Channel 1 Vector (Low) TIM1 Channel 0 Vector (High) TIM1 Channel 0 Vector (Low) PLL Vector (High) PLL Vector (Low) IRQ2 Vector (High) IRQ2 Vector (Low) IRQ1 Vector (High) IRQ1 Vector (Low) SWI Vector (High) SWI Vector (Low) Reset Vector (High) Reset Vector (Low)
.
Highest
Data Sheet 60 Memory Map
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 3. Random-Access Memory (RAM)
3.1 Contents
3.2 3.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
3.2 Introduction
This section describes the 512 bytes of RAM (random-access memory).
3.3 Functional Description
Addresses $0060 through $025F are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64K-byte memory space.
NOTE:
For correct operation, the stack pointer must point only to RAM locations. Within page zero are 160 bytes of RAM. Because the location of the stack RAM is programmable, all page zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved from its reset location at $00FF out of page zero, direct addressing mode instructions can efficiently access all page zero RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global variables. Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU registers.
NOTE:
For M6805 compatibility, the H register is not stacked.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Random-Access Memory (RAM)
Data Sheet 61
Random-Access Memory (RAM)
During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls.
NOTE:
Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation.
Data Sheet 62
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Random-Access Memory (RAM) Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 4. FLASH Memory
4.1 Contents
4.2 4.3 4.4 4.5 4.6 4.7 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 66 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 67 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .68
4.8 FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 4.8.1 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Introduction
This section describes the operation of the embedded FLASH memory. This memory can be read, programmed, and erased from a single external supply. The program and erase operations are enabled through the use of an internal charge pump.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor FLASH Memory
Data Sheet 63
FLASH Memory
Addr.
Register Name Read: FLASH Control Register Write: (FLCR) Reset: Read: FLASH Block Protect Write: Register (FLBPR) Reset:
Bit 7 0
6 0
5 0
4 0
3 HVEN 0 BPR3 0
2 MASS 0 BPR2 0
1 ERASE 0 BPR1 0
Bit 0 PGM 0 BPR0 0
$FE08
0 BPR7 0
0 BPR6 0
0 BPR5 0
0 BPR4 0
$FE09
= Unimplemented
Figure 4-1. FLASH I/O Register Summary
4.3 Functional Description
The FLASH memory consists of an array of 12,288 bytes for user memory plus a block of 38 bytes for user interrupt vectors and one byte for the mask option register. An erased bit reads as logic 1 and a programmed bit reads as a logic 0. The FLASH memory page size is defined as 128 bytes, and is the minimum size that can be erased in a page erase operation. Program and erase operations are facilitated through control bits in FLASH control register (FLCR). The address ranges for the FLASH memory are: * * * $C000-$EFFF; user memory, 12,288 bytes $FFDA-$FFFF; user interrupt vectors, 38 bytes $FF80; mask option register
Programming tools are available from Freescale. Contact your local Freescale representative for more information.
NOTE:
A security feature prevents viewing of the FLASH contents.1
1. No security feature is absolutely secure. However, Freescale's strategy is to make reading or copying the FLASH difficult for unauthorized users.
Data Sheet 64 FLASH Memory
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
FLASH Memory FLASH Control Register
4.4 FLASH Control Register
The FLASH control register (FLCR) controls FLASH program and erase operations.
Address: $FE08 Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 0 6 0 5 0 4 0 HVEN MASS ERASE PGM 3 2 1 Bit 0
Figure 4-2. FLASH Control Register (FLCR) HVEN -- High Voltage Enable Bit This read/write bit enables the charge pump to drive high voltages for program and erase operations in the array. HVEN can only be set if either PGM = 1 or ERASE = 1 and the proper sequence for program or erase is followed. 1 = High voltage enabled to array and charge pump on 0 = High voltage disabled to array and charge pump off MASS -- Mass Erase Control Bit This read/write bit configures the memory for mass erase operation or block erase operation when the ERASE bit is set. 1 = Mass Erase operation selected 0 = Block Erase operation selected ERASE -- Erase Control Bit This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Erase operation selected 0 = Erase operation not selected PGM -- Program Control Bit This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Program operation selected 0 = Program operation not selected
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor FLASH Memory Data Sheet 65
FLASH Memory 4.5 FLASH Page Erase Operation
Use the following procedure to erase a page of FLASH memory. A page consists of 128 consecutive bytes starting from addresses $xx00 or $xx80. The 38-byte user interrupt vectors area also forms a page. The 38-byte user interrupt vectors cannot be erased by the page erase operation because of security reasons. Mass erase is required to erase this page. 1. Set the ERASE bit and clear the MASS bit in the FLASH control register. 2. Write any data to any FLASH address within the page address range desired. 3. Wait for a time, tnvs (10s). 4. Set the HVEN bit. 5. Wait for a time, tErase (1ms). 6. Clear the ERASE bit. 7. Wait for a time, tnvh (5s). 8. Clear the HVEN bit. 9. After time, trcv (1s), the memory can be accessed again in read mode.
NOTE:
Programming and erasing of FLASH locations cannot be performed by executing code from the FLASH memory; the code must be executed from RAM. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps.
Data Sheet 66 FLASH Memory
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
FLASH Memory FLASH Mass Erase Operation
4.6 FLASH Mass Erase Operation
Use the following procedure to erase the entire FLASH memory to read as logic 1: 1. Set both the ERASE bit and the MASS bit in the FLASH control register. 2. Write any data to any FLASH address within the FLASH memory address range. 3. Wait for a time, tnvs (10s). 4. Set the HVEN bit. 5. Wait for a time tMErase (4ms). 6. Clear the ERASE bit. 7. Wait for a time, tnvhl (100s). 8. Clear the HVEN bit. 9. After time, trcv (1s), the memory can be accessed again in read mode.
NOTE:
Programming and erasing of FLASH locations cannot be performed by executing code from the FLASH memory; the code must be executed from RAM. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor FLASH Memory
Data Sheet 67
FLASH Memory 4.7 FLASH Program Operation
Programming of the FLASH memory is done on a row basis. A row consists of 64 consecutive bytes starting from addresses $xx00, $xx40, $xx80, or $xxC0. The procedure for programming a row of the FLASH memory is outlined below: 1. Set the PGM bit. This configures the memory for program operation and enables the latching of address and data for programming. 2. Write any data to any FLASH address within the row address range desired. 3. Wait for a time, tnvs (10s). 4. Set the HVEN bit. 5. Wait for a time, tpgs (5s). 6. Write data to the FLASH address to be programmed. 7. Wait for time, tProg (30s). 8. Repeat step 6 and 7 until all the bytes within the row are programmed. 9. Clear the PGM bit. 10. Wait for time, tnvh (5s). 11. Clear the HVEN bit. 12. After time, trcv (1s), the memory can be accessed again in read mode. This program sequence is repeated throughout the memory until all data is programmed.
NOTE:
Programming and erasing of FLASH locations cannot be performed by executing code from the FLASH memory; the code must be executed from RAM. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps. Do not exceed tProg maximum. See 24.18 FLASH Memory Characteristics.
Data Sheet 68 FLASH Memory
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
FLASH Memory FLASH Program Operation
Figure 4-3 shows a flowchart representation for programming the FLASH memory.
1
Set PGM bit
Algorithm for programming a row (64 bytes) of FLASH memory
2
Write any data to any FLASH address within the row address range desired
3
Wait for a time, tnvs
4
Set HVEN bit
5
Wait for a time, tpgs
6
Write data to the FLASH address to be programmed
7
Wait for a time, tProg
Completed programming this row? N
9
Y
NOTE: The time between each FLASH address change (step 6 to step 6), or the time between the last FLASH address programmed to clearing PGM bit (step 6 to step 9) must not exceed the maximum programming time, tProg max. This row program algorithm assumes the row/s to be programmed are initially erased.
Clear PGM bit
10
Wait for a time, tnvh
11
Clear HVEN bit
12
Wait for a time, trcv
End of Programming
Figure 4-3. FLASH Programming Flowchart
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor FLASH Memory Data Sheet 69
FLASH Memory 4.8 FLASH Protection
Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target application, provision is made to protect pages of memory from unintentional erase or program operations due to system malfunction. This protection is done by use of a FLASH block protect register (FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range of the protected area starts from a location defined by FLBPR and ends to the bottom of the FLASH memory ($FFFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or PROGRAM operations.
NOTE:
When the FLBPR is cleared (all 0's), the entire FLASH memory is protected from being programmed and erased. When all the bits are set, the entire FLASH memory is accessible for program and erase.
4.8.1 FLASH Block Protect Register The FLASH block protect register is implemented as an 8-bit I/O register. The content of this register determine the starting location of the protected range within the FLASH memory.
Address: $FE09 Bit 7 Read: BPR7 Write: Reset: 0 0 0 0 0 0 0 0 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 6 5 4 3 2 1 Bit 0
Figure 4-4. FLASH Block Protect Register (FLBPR) BPR[7:0] -- FLASH Block Protect Register Bit7 to Bit 0 BPR[7:1] represent bits [13:7] of a 16-bit memory address. Bits [15:14] are logic 1s and bits [6:0] are logic 0s.
16-bit memory address Start address of FLASH block protect 11 BPR[7:1] 0000000
Figure 4-5. FLASH Block Protect Start Address
Data Sheet 70 FLASH Memory MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
FLASH Memory FLASH Protection
BPR0 is used only for BPR[7:0] = $FF, for no block protection. The resultant 16-bit address is used for specifying the start address of the FLASH memory for block protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF. With this mechanism, the protect start address can be XX00 or XX80 (at page boundaries) within the FLASH memory. Examples of protect start address:
BPR[7:0] $00 or $01 $02 or $03 $04 or $05 $06 or $07 $08 or $09 and so on... $F8 or $F9 $FA or $FB $FC or $FD $FE $FF $FE00 (1111 1110 0000 0000) $FE80 (1111 1110 1000 0000) $FF00 (1111 1111 0000 0000) $FF80 (1111 1111 1000 0000) The entire FLASH memory is not protected. Start of Address of Protect Range $C000 (1100 0000 0000 0000) The entire FLASH memory is protected. $C080 (1100 0000 1000 0000) $C100 (1100 0001 0000 0000) $C180 (1100 0001 1000 0000) $C200 (1100 0010 0000 0000)
Note: The end address of the protected range is always $FFFF.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor FLASH Memory
Data Sheet 71
FLASH Memory
Data Sheet 72 FLASH Memory
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 5. Configuration and Mask Option Registers (CONFIG & MOR)
5.1 Contents
5.2 5.3 5.4 5.5 5.6 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . . 75 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . . 77 Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Introduction
This section describes the configuration registers, CONFIG1 and CONFIG2; and the mask option register, MOR. The configuration registers enable or disable these options: * * * * * * * * * * * Computer operating properly module (COP) COP timeout period (218 - 24 or 213 - 24 ICLK cycles) Low-voltage inhibit (LVI) module power LVI module reset LVI module in stop mode LVI module voltage trip point selection STOP instruction Stop mode recovery time (32 ICLK cycles or 4096 ICLK cycles) Oscillator (internal, RC, and crystal) during stop mode Serial communications interface clock source (CGMXCLK or fBUS) Current detect output pin
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Configuration and Mask Option Registers (CONFIG & MOR)
Data Sheet 73
Configuration and Mask Option
The mask option register selects one of the following oscillator options as the MCU reference clock: * * *
Addr. Register Name
Internal oscillator RC oscillator Crystal oscillator
Bit 7 6 STOP_ RCLKEN 0 5 4 3 2 0 1 Bit 0 STOP_ OSCCLK1 OSCCLK0 XCLKEN 0 0 0
$001D
Read: STOP_ Configuration Register 2 Write: ICLKEN (CONFIG2) Reset: 0 Read: COPRS Configuration Register 1 Write: (CONFIG1) Reset: 0
CDOEN SCIBDSRC 0 STOP 0 R 1 U 0 COPD 0 R 1 U
0 SSREC 0 R 1 U
$001F
LVISTOP LVIRSTD LVIPWRD LVI5OR3 0 0 R 1 U 0 R 1 U 0 R 1 U
$FF80
Mask Option Register Read: OSCSEL1 OSCSEL0 (MOR)* Write: Erased: 1 U 1 U
* FLASH register.
Reset:
One-time writable register after each reset. Reset by POR only. = Unimplemented R = Reserved
Figure 5-1. CONFIG and MOR Register Summary
5.3 Functional Description
The configuration registers and the mask option register are used in the initialization of various options. These two types of registers are configured differently: * * Configuration registers -- Write-once registers after reset Mask option register -- FLASH register (write by programming)
The configuration registers can be written once after each reset. All of the configuration register bits are cleared during reset. Since the various options affect the operation of the MCU, it is recommended that these registers be written immediately after reset. The configuration registers are located at $001D and $001F. The configurations register may be read at anytime.
Data Sheet 74 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Configuration and Mask Option Registers (CONFIG & MOR) Freescale Semiconductor
Configuration and Mask Option Registers (CONFIG & MOR) Configuration Register 1 (CONFIG1)
NOTE:
The options except LVI5OR3 are one-time writable by the user after each reset. The LVI5OR3 bit is one-time writable by the user only after each POR (power-on reset). The CONFIG registers are not in the FLASH memory but are special registers containing one-time writable latches after each reset. Upon a reset, the CONFIG registers default to predetermined settings as shown in Figure 5-2 and Figure 5-3. The mask option register (MOR) is used for selecting one of the three clock options for the MCU. The MOR is a byte located in FLASH memory, and is written to by a FLASH programming routine.
5.4 Configuration Register 1 (CONFIG1)
Address: $001F Bit 7 Read: COPRS Write: Reset: 0 0 0 0 0* 0 0 0 LVISTOP LVIRSTD LVIPWRD LVI5OR3 SSREC STOP COPD 6 5 4 3 2 1 Bit 0
* Reset by POR only.
Figure 5-2. Configuration Register 1 (CONFIG1) COPRS -- COP Rate Select COPRS selects the COP time-out period. Reset clears COPRS. (See Section 21. Computer Operating Properly (COP).) 1 = COP time out period = 213 - 24 ICLK cycles 0 = COP time out period = 218 - 24 ICLK cycles LVISTOP -- LVI Enable in Stop Mode When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode. Reset clears LVISTOP. (See Section 22. Low-Voltage Inhibit (LVI).) 1 = LVI enabled during stop mode 0 = LVI disabled during stop mode
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Configuration and Mask Option Registers (CONFIG & MOR)
Data Sheet 75
Configuration and Mask Option
LVIRSTD -- LVI Reset Disable LVIRSTD disables the reset signal from the LVI module. (See Section 22. Low-Voltage Inhibit (LVI).) 1 = LVI module resets disabled 0 = LVI module resets enabled LVIPWRD -- LVI Power Disable Bit LVIPWRD disables the LVI module. (See Section 22. Low-Voltage Inhibit (LVI).) 1 = LVI module power disabled 0 = LVI module power enabled LVI5OR3 -- LVI 5V or 3V Operating Mode LVI5OR3 selects the voltage operating mode of the LVI module. (See Section 22. Low-Voltage Inhibit (LVI).) The voltage mode selected for the LVI should match the operating VDD. See Section 24. Electrical Specifications for the LVI voltage trip points for each of the modes. 1 = LVI operates in 5V mode 0 = LVI operates in 3V mode SSREC -- Short Stop Recovery SSREC enables the CPU to exit stop mode with a delay of 32 ICLK cycles instead of a 4096 ICLK cycle delay. 1 = Stop mode recovery after 32 ICLK cycles 0 = Stop mode recovery after 4096 ICLK cycles
NOTE:
Exiting stop mode by pulling reset will result in the long stop recovery. If using an external crystal oscillator, and it is disabled during stop mode (STOP_XCLKEN=0), do not set the SSREC bit.
NOTE:
When the LVI is disabled in stop mode (LVISTOP=0), the system stabilization time for long stop recovery (4096 ICLK cycles) gives a delay longer than the LVI's turn-on time. There is no period where the MCU is not protected from a low power condition. However, when using the short stop recovery configuration option, the 32 ICLK delay is less than the LVI's turn-on time and there exists a period in start-up where the LVI is not protecting the MCU.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Configuration and Mask Option Registers (CONFIG & MOR) Freescale Semiconductor
Data Sheet 76
Configuration and Mask Option Registers (CONFIG & MOR) Configuration Register 2 (CONFIG2)
STOP -- STOP Instruction Enable STOP enables the STOP instruction. 1 = STOP instruction enabled 0 = STOP instruction treated as illegal opcode COPD -- COP Disable Bit COPD disables the COP module. (See Section 21. Computer Operating Properly (COP).) 1 = COP module disabled 0 = COP module enabled
5.5 Configuration Register 2 (CONFIG2)
Address: $001D Bit 7 Read: STOP_ ICLKEN Write: 0 6 STOP_ RCLKEN 0 5 4 3 2 0 CDOEN SCIBDSRC 0 0 0 1 Bit 0
STOP_ OSCCLK1 OSCCLK0 XCLKEN 0 0 0
Reset:
Figure 5-3. Configuration Register 2 (CONFIG2) STOP_ICLKEN -- Internal Oscillator Stop Mode Disable STOP_ICLKEN disables the internal oscillator during stop mode. Setting the STOP_ICLKEN bit disables the oscillator during stop mode. (See 7.4 Internal Oscillator). Reset clears this bit. 1 = Internal oscillator disabled during stop mode 0 = Internal oscillator enabled to operate during stop mode STOP_RCLKEN -- RC Oscillator Stop Mode Enable STOP_RCLKEN enables the RC oscillator to continue operating during stop mode. Setting the STOP_RCLKEN bit allows the oscillator to operate continuously even during stop mode. This is useful for driving the timebase module to allow it to generate periodic wake up while in stop mode. (See Section 8. Clock Generator Module (CGM) and subsection 8.8.2 Stop Mode.) Reset clears this bit. 1 = RC oscillator enabled to operate during stop mode 0 = RC oscillator disabled during stop mode
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Configuration and Mask Option Registers (CONFIG & MOR) Data Sheet 77
Configuration and Mask Option
STOP_XCLKEN -- Crystal Oscillator Stop Mode Enable STOP_XCLKEN enables the crystal (x-tal) oscillator to continue operating during stop mode. Setting the STOP_XCLKEN bit allows the x-tal oscillator to operate continuously even during stop mode. This is useful for driving the timebase module to allow it to generate periodic wake up while in stop mode. (See Section 8. Clock Generator Module (CGM) and subsection 8.8.2 Stop Mode.) Reset clears this bit. 1 = X-tal oscillator enabled to operate during stop mode 0 = X-tal oscillator disabled during stop mode OSCCLK1, OSCCLK0 -- Oscillator Output Control Bits OSCCLK1 and OSCCLK0 select which oscillator output to be driven out as OSCCLK to the timebase module (TBM). Reset clears these two bits.
OSCCLK1 0 0 1 1 OSCCLK0 0 1 0 1 Timebase Clock Source Internal oscillator (ICLK) RC oscillator (RCCLK) X-tal oscillator (XTAL) Not used
CDOEN -- Current-Flow Detect Output Enable CDOEN enables the port pin PC0/PWM0/CD as the CD output pin for the current detect flag (CDIF) from the analog module. Reset clears the CDOEN bit. 1 = PCO/PWMO/CD pin enabled as CD output pin, PTC0 and PWM0 functions are disabled. 0 = PTC0/PWM/CD pin disabled as CD output pin, PTC0 or PWM0 functions are available; see 18.5.1 Port C Data Register (PTC).
Data Sheet 78
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Configuration and Mask Option Registers (CONFIG & MOR) Freescale Semiconductor
Configuration and Mask Option Registers (CONFIG & MOR) Mask Option Register (MOR)
SCIBDSRC -- SCI Baud Rate Clock Source SCIBDSRC selects the clock source used for the SCI. The setting of this bit affects the frequency at which the SCI operates. 1 = Internal data bus clock, fBUS, is used as clock source for SCI 0 = Oscillator clock, CGMXCLK, is used as clock source for SCI
5.6 Mask Option Register (MOR)
The mask option register (MOR) is used for selecting one of the three clock options for the MCU. The MOR is a byte located in FLASH memory, and is written to by a FLASH programming routine.
Address: $FF80 Bit 7 Read: OSCSEL1 OSCSEL0 Write: Erased: Reset: 1 U R 1 U = Reserved 1 U 1 U 1 U 1 U 1 U 1 U R R R R R R 6 5 4 3 2 1 Bit 0
Figure 5-4. Mask Option Register (MOR) OSCSEL1, OSCSEL0 -- Oscillator Selection Bits OSCSEL1 and OSCSEL0 select which oscillator is used for the MCU CGMXCLK clock. The erase state of these two bits is logic 1. These bits are unaffected by reset. (See Table 5-1). Bits 5-0 -- Should be left as 1's.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Configuration and Mask Option Registers (CONFIG & MOR)
Data Sheet 79
Configuration and Mask Option
Table 5-1. CGMXCLK Clock Selection
OSCSEL1 0 0 1 OSCSEL0 0 1 0 CGMXCLK -- ICLK RCCLK OSC2 pin -- fBUS fBUS Inverting output of XTAL Not used Internal oscillator generates the CGMXCLK. RC oscillator generates the CGMXCLK. Internal oscillator is available after each POR or reset. X-tal oscillator generates the CGMXCLK. Internal oscillator is available after each POR or reset. Comments
1
1
X-TAL
NOTE:
The internal oscillator is a free running oscillator and is available after each POR or reset. It is turned-off in stop mode by clearing the STOP_ICLKEN bit in CONFIG2.
Data Sheet 80
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Configuration and Mask Option Registers (CONFIG & MOR) Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 6. Central Processor Unit (CPU)
6.1 Contents
6.2 6.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 6.7 6.8 6.9 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Introduction
The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The CPU08 Reference Manual (Freescale document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Central Processor Unit (CPU)
Data Sheet 81
Central Processor Unit (CPU) 6.3 Features
* * * * * * * * * * * Object code fully upward-compatible with M68HC05 Family 16-bit stack pointer with stack manipulation instructions 16-bit index register with x-register manipulation instructions 8-MHz CPU internal bus frequency 64K-byte program/data memory space 16 addressing modes Memory-to-memory data moves without using accumulator Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions Enhanced binary-coded decimal (BCD) data handling Modular architecture with expandable internal bus definition for extension of addressing range beyond 64K-bytes Low-power stop and wait modes
6.4 CPU Registers
Figure 6-1 shows the five CPU registers. CPU registers are not part of the memory map.
Data Sheet 82
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor
Central Processor Unit (CPU) CPU Registers
7 15 H 15 15 X
0 ACCUMULATOR (A) 0 INDEX REGISTER (H:X) 0 STACK POINTER (SP) 0 PROGRAM COUNTER (PC)
7 0 V11HINZC
CONDITION CODE REGISTER (CCR)
CARRY/BORROW FLAG ZERO FLAG NEGATIVE FLAG INTERRUPT MASK HALF-CARRY FLAG TWO'S COMPLEMENT OVERFLOW FLAG
Figure 6-1. CPU Registers
6.4.1 Accumulator The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations.
Bit 7
Read: Write: Reset: Unaffected by reset
6
5
4
3
2
1
Bit 0
Figure 6-2. Accumulator (A)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Central Processor Unit (CPU)
Data Sheet 83
Central Processor Unit (CPU)
6.4.2 Index Register The 16-bit index register allows indexed addressing of a 64K-byte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register. In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand. The index register can serve also as a temporary data storage location.
Bit 15
Read: Write: Reset: 0 0 0 0 0 0 0 0 X X X X X X X X
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Bit 0
X = Indeterminate
Figure 6-3. Index Register (H:X)
6.4.3 Stack Pointer The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack. In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand.
Data Sheet 84
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor
Central Processor Unit (CPU) CPU Registers
Bit 15
Read: Write: Reset: 0
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 6-4. Stack Pointer (SP)
NOTE:
The location of the stack is arbitrary and may be relocated anywhere in RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct address (page 0) space. For correct operation, the stack pointer must point only to RAM locations.
6.4.4 Program Counter The program counter is a 16-bit register that contains the address of the next instruction or operand to be fetched. Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location. During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state.
Bit 15
Read: Write: Reset: Loaded with Vector from $FFFE and $FFFF
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Bit 0
Figure 6-5. Program Counter (PC)
6.4.5 Condition Code Register The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Central Processor Unit (CPU) Data Sheet 85
Central Processor Unit (CPU)
5 are set permanently to logic 1. The following paragraphs describe the functions of the condition code register.
Bit 7
Read: V Write: Reset: X X = Indeterminate 1 1 X 1 X X X 1 1 H I N Z C
6
5
4
3
2
1
Bit 0
Figure 6-6. Condition Code Register (CCR) V -- Overflow Flag The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag. 1 = Overflow 0 = No overflow H -- Half-Carry Flag The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or addwith-carry (ADC) operation. The half-carry flag is required for binarycoded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor. 1 = Carry between bits 3 and 4 0 = No carry between bits 3 and 4
Data Sheet 86
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor
Central Processor Unit (CPU) CPU Registers
I -- Interrupt Mask When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched. 1 = Interrupts disabled 0 = Interrupts enabled
NOTE:
To maintain M6805 Family compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions. After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI). N -- Negative flag The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. 1 = Negative result 0 = Non-negative result Z -- Zero flag The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of $00. 1 = Zero result 0 = Non-zero result
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Central Processor Unit (CPU)
Data Sheet 87
Central Processor Unit (CPU)
C -- Carry/Borrow Flag The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions -- such as bit test and branch, shift, and rotate -- also clear or set the carry/borrow flag. 1 = Carry out of bit 7 0 = No carry out of bit 7
6.5 Arithmetic/Logic Unit (ALU)
The ALU performs the arithmetic and logic operations defined by the instruction set. Refer to the CPU08 Reference Manual (Freescale document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU.
6.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.
6.6.1 Wait Mode The WAIT instruction: * Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set. Disables the CPU clock
*
Data Sheet 88
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor
Central Processor Unit (CPU) CPU During Break Interrupts
6.6.2 Stop Mode The STOP instruction: * Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set. Disables the CPU clock
*
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.
6.7 CPU During Break Interrupts
If a break module is present on the MCU, the CPU starts a break interrupt by: * * Loading the instruction register with the SWI instruction Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode
The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted.
6.8 Instruction Set Summary
6.9 Opcode Map
See Table 6-2.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Central Processor Unit (CPU)
Data Sheet 89
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary
Cycles 2 3 4 4 3 2 4 5 2 3 4 4 3 2 4 5 2 2 2 3 4 4 3 2 4 5 4 1 1 4 3 5 4 1 1 4 3 5 3 4 4 4 4 4 4 4 4 Source Form ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP AIS #opr AIX #opr AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP BCC rel Operand ii dd hh ll ee ff ff ff ee ff ii dd hh ll ee ff ff ff ee ff ii ii ii dd hh ll ee ff ff ff ee ff dd ff ff dd ff ff rr dd dd dd dd dd dd dd dd Address Mode Opcode A9 B9 C9 D9 E9 F9 9EE9 9ED9 AB BB CB DB EB FB 9EEB 9EDB A7 AF A4 B4 C4 D4 E4 F4 9EE4 9ED4 38 48 58 68 78 9E68 37 47 57 67 77 9E67 24 11 13 15 17 19 1B 1D 1F Effect on CCR VHINZC
Operation
Description
Add with Carry
A (A) + (M) + (C)
-
IMM DIR EXT IX2 IX1 IX SP1 SP2 IMM DIR EXT IX2 IX1 IX SP1 SP2
Add without Carry
A (A) + (M)
-
Add Immediate Value (Signed) to SP Add Immediate Value (Signed) to H:X
SP (SP) + (16 M) H:X (H:X) + (16 M)
- - - - - - IMM - - - - - - IMM IMM DIR EXT IX2 - IX1 IX SP1 SP2 DIR INH INH IX1 IX SP1 DIR INH INH IX1 IX SP1
Logical AND
A (A) & (M)
0--
Arithmetic Shift Left (Same as LSL)
C b7 b0
0
--
Arithmetic Shift Right
b7 b0
C
--
Branch if Carry Bit Clear
PC (PC) + 2 + rel ? (C) = 0
- - - - - - REL DIR (b0) DIR (b1) DIR (b2) DIR (b3) ------ DIR (b4) DIR (b5) DIR (b6) DIR (b7)
BCLR n, opr
Clear Bit n in M
Mn 0
Data Sheet 90
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor
Central Processor Unit (CPU) Opcode Map
Table 6-1. Instruction Set Summary (Continued)
Cycles 3 3 3 3 3 3 3 3 3 3 2 3 4 4 3 2 4 5 3 3 3 3 3 3 3 3 3 3 Source Form BCS rel BEQ rel BGE opr Operand rr rr rr rr rr rr rr rr rr rr ii dd hh ll ee ff ff ff ee ff rr rr rr rr rr rr rr rr rr rr Address Mode Opcode 25 27 90 92 28 29 22 24 2F 2E A5 B5 C5 D5 E5 F5 9EE5 9ED5 93 25 23 91 2C 2B 2D 26 2A 20 Effect on CCR VHINZC Branch if Carry Bit Set (Same as BLO) Branch if Equal Branch if Greater Than or Equal To (Signed Operands) Branch if Greater Than (Signed Operands) Branch if Half Carry Bit Clear Branch if Half Carry Bit Set Branch if Higher Branch if Higher or Same (Same as BCC) Branch if IRQ Pin High Branch if IRQ Pin Low PC (PC) + 2 + rel ? (C) = 1 PC (PC) + 2 + rel ? (Z) = 1 PC (PC) + 2 + rel ? (N V) = 0
Operation
Description
- - - - - - REL - - - - - - REL - - - - - - REL
BGT opr BHCC rel BHCS rel BHI rel BHS rel BIH rel BIL rel BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP BLE opr BLO rel BLS rel BLT opr BMC rel BMI rel BMS rel BNE rel BPL rel BRA rel
PC (PC) + 2 +rel ? (Z) | (N V) = 0 - - - - - - REL PC (PC) + 2 + rel ? (H) = 0 PC (PC) + 2 + rel ? (H) = 1 PC (PC) + 2 + rel ? (C) | (Z) = 0 PC (PC) + 2 + rel ? (C) = 0 PC (PC) + 2 + rel ? IRQ = 1 PC (PC) + 2 + rel ? IRQ = 0 - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL IMM DIR EXT IX2 - IX1 IX SP1 SP2
Bit Test
(A) & (M)
0--
Branch if Less Than or Equal To (Signed Operands) Branch if Lower (Same as BCS) Branch if Lower or Same Branch if Less Than (Signed Operands) Branch if Interrupt Mask Clear Branch if Minus Branch if Interrupt Mask Set Branch if Not Equal Branch if Plus Branch Always
PC (PC) + 2 +rel ? (Z) | (N V) = 1 - - - - - - REL PC (PC) + 2 + rel ? (C) = 1 PC (PC) + 2 + rel ? (C) | (Z) = 1 PC (PC) + 2 + rel ? (N V) =1 PC (PC) + 2 + rel ? (I) = 0 PC (PC) + 2 + rel ? (N) = 1 PC (PC) + 2 + rel ? (I) = 1 PC (PC) + 2 + rel ? (Z) = 0 PC (PC) + 2 + rel ? (N) = 0 PC (PC) + 2 + rel - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Central Processor Unit (CPU)
Data Sheet 91
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary (Continued)
Cycles 5 5 5 5 5 5 5 5 3 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 5 4 4 5 4 6 1 2 dd 3 1 1 1 3 2 4 Source Form Operand dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd dd dd dd dd dd dd dd rr dd rr ii rr ii rr ff rr rr ff rr ff ff Address Mode Opcode 01 03 05 07 09 0B 0D 0F 21 00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E AD 31 41 51 61 71 9E61 98 9A 3F 4F 5F 8C 6F 7F 9E6F Effect on CCR VHINZC
Operation
Description
BRCLR n,opr,rel Branch if Bit n in M Clear
PC (PC) + 3 + rel ? (Mn) = 0
-----
DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)
BRN rel
Branch Never
PC (PC) + 2
- - - - - - REL DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)
BRSET n,opr,rel Branch if Bit n in M Set
PC (PC) + 3 + rel ? (Mn) = 1
-----
BSET n,opr
Set Bit n in M
Mn 1
DIR (b0) DIR (b1) DIR (b2) DIR (b3) ------ DIR (b4) DIR (b5) DIR (b6) DIR (b7)
BSR rel
Branch to Subroutine
PC (PC) + 2; push (PCL) SP (SP) - 1; push (PCH) SP (SP) - 1 PC (PC) + rel
- - - - - - REL
CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel Compare and Branch if Equal CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel CLC CLI CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP Clear Carry Bit Clear Interrupt Mask
DIR PC (PC) + 3 + rel ? (A) - (M) = $00 IMM PC (PC) + 3 + rel ? (A) - (M) = $00 IMM PC (PC) + 3 + rel ? (X) - (M) = $00 ------ IX1+ PC (PC) + 3 + rel ? (A) - (M) = $00 IX+ PC (PC) + 2 + rel ? (A) - (M) = $00 SP1 PC (PC) + 4 + rel ? (A) - (M) = $00 C0 I0 M $00 A $00 X $00 H $00 M $00 M $00 M $00 - - - - - 0 INH - - 0 - - - INH DIR INH INH 0 - - 0 1 - INH IX1 IX SP1
Clear
Data Sheet 92
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor
Central Processor Unit (CPU) Opcode Map
Table 6-1. Instruction Set Summary (Continued)
Cycles 2 3 4 4 3 2 4 5 4 1 1 4 3 5 3 4 2 3 4 4 3 2 4 5 2 5 3 3 5 4 6 4 1 1 4 3 5 7 Source Form CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP COM opr COMA COMX COM opr,X COM ,X COM opr,SP CPHX #opr CPHX opr CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP DAA Operand ii dd hh ll ee ff ff ff ee ff dd ff ff ii ii+1 dd ii dd hh ll ee ff ff ff ee ff dd rr rr rr ff rr rr ff rr dd ff ff Address Mode Opcode A1 B1 C1 D1 E1 F1 9EE1 9ED1 33 43 53 63 73 9E63 65 75 A3 B3 C3 D3 E3 F3 9EE3 9ED3 72 3B 4B 5B 6B 7B 9E6B 3A 4A 5A 6A 7A 9E6A 52 Effect on CCR VHINZC
Operation
Description
Compare A with M
(A) - (M)
--
IMM DIR EXT IX2 IX1 IX SP1 SP2 DIR INH INH 1 IX1 IX SP1 IMM DIR IMM DIR EXT IX2 IX1 IX SP1 SP2 INH
Complement (One's Complement)
M (M) = $FF - (M) A (A) = $FF - (M) X (X) = $FF - (M) M (M) = $FF - (M) M (M) = $FF - (M) M (M) = $FF - (M) (H:X) - (M:M + 1)
0--
Compare H:X with M
--
Compare X with M
(X) - (M)
--
Decimal Adjust A
(A)10
U--
DBNZ opr,rel DBNZA rel Decrement and Branch if Not Zero DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP DIV
A (A) -1 or M (M) -1 or X (X) -1 DIR PC (PC) + 3 + rel ? (result) 0 INH PC (PC) + 2 + rel ? (result) 0 - - - - - - INH PC (PC) + 2 + rel ? (result) 0 IX1 PC (PC) + 3 + rel ? (result) 0 IX PC (PC) + 2 + rel ? (result) 0 SP1 PC (PC) + 4 + rel ? (result) 0 M (M) - 1 A (A) - 1 X (X) - 1 M (M) - 1 M (M) - 1 M (M) - 1 A (H:A)/(X) H Remainder DIR INH INH - IX1 IX SP1 INH
Decrement
--
Divide
----
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Central Processor Unit (CPU)
Data Sheet 93
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary (Continued)
Cycles 2 3 4 4 3 2 4 5 4 1 1 4 3 5 2 3 4 3 2 4 5 6 5 4 2 3 4 4 3 2 4 5 3 4 2 3 4 4 3 2 4 5 4 1 1 4 3 5 Source Form EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP INC opr INCA INCX INC opr,X INC ,X INC opr,SP JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X LDA #opr LDA opr LDA opr LDA opr,X LDA opr,X LDA ,X LDA opr,SP LDA opr,SP LDHX #opr LDHX opr LDX #opr LDX opr LDX opr LDX opr,X LDX opr,X LDX ,X LDX opr,SP LDX opr,SP LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP Operand ii dd hh ll ee ff ff ff ee ff dd ff ff dd hh ll ee ff ff dd hh ll ee ff ff ii dd hh ll ee ff ff ff ee ff ii jj dd ii dd hh ll ee ff ff ff ee ff dd ff ff Address Mode Opcode A8 B8 C8 D8 E8 F8 9EE8 9ED8 3C 4C 5C 6C 7C 9E6C BC CC DC EC FC BD CD DD ED FD A6 B6 C6 D6 E6 F6 9EE6 9ED6 45 55 AE BE CE DE EE FE 9EEE 9EDE 38 48 58 68 78 9E68 Effect on CCR VHINZC
Operation
Description
Exclusive OR M with A
A (A M)
0--
IMM DIR EXT IX2 - IX1 IX SP1 SP2 DIR INH INH - IX1 IX SP1
Increment
M (M) + 1 A (A) + 1 X (X) + 1 M (M) + 1 M (M) + 1 M (M) + 1
--
Jump
PC Jump Address
DIR EXT - - - - - - IX2 IX1 IX DIR EXT - - - - - - IX2 IX1 IX IMM DIR EXT IX2 - IX1 IX SP1 SP2 - IMM DIR
Jump to Subroutine
PC (PC) + n (n = 1, 2, or 3) Push (PCL); SP (SP) - 1 Push (PCH); SP (SP) - 1 PC Unconditional Address
Load A from M
A (M)
0--
Load H:X from M
H:X (M:M + 1)
0--
Load X from M
X (M)
0--
IMM DIR EXT IX2 - IX1 IX SP1 SP2 DIR INH INH IX1 IX SP1
Logical Shift Left (Same as ASL)
C b7 b0
0
--
Data Sheet 94
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor
Central Processor Unit (CPU) Opcode Map
Table 6-1. Instruction Set Summary (Continued)
Cycles 4 1 1 4 3 5 5 4 4 4 5 dd 4 1 1 4 3 5 1 3 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 2 2 2 2 2 2 dd 4 1 1 4 3 5 Source Form LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP MOV opr,opr MOV opr,X+ MOV #opr,opr MOV X+,opr MUL NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP NOP NSA ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP PSHA PSHH PSHX PULA PULH PULX ROL opr ROLA ROLX ROL opr,X ROL ,X ROL opr,SP Operand dd ff ff dd dd dd ii dd dd ff ff ff ff Address Mode Opcode 34 44 54 64 74 9E64 4E 5E 6E 7E 42 30 40 50 60 70 9E60 9D 62 AA BA CA DA EA FA 9EEA 9EDA 87 8B 89 86 8A 88 39 49 59 69 79 9E69 Effect on CCR VHINZC
Operation
Description
Logical Shift Right
0 b7 b0
C
--0
DIR INH INH IX1 IX SP1 DD DIX+ - IMD IX+D
(M)Destination (M)Source Move H:X (H:X) + 1 (IX+D, DIX+) Unsigned multiply X:A (X) x (A) M -(M) = $00 - (M) A -(A) = $00 - (A) X -(X) = $00 - (X) M -(M) = $00 - (M) M -(M) = $00 - (M) None A (A[3:0]:A[7:4]) 0--
- 0 - - - 0 INH DIR INH INH IX1 IX SP1
Negate (Two's Complement)
--
No Operation Nibble Swap A
- - - - - - INH - - - - - - INH IMM DIR EXT IX2 - IX1 IX SP1 SP2
Inclusive OR A and M
A (A) | (M)
0--
Push A onto Stack Push H onto Stack Push X onto Stack Pull A from Stack Pull H from Stack Pull X from Stack
Push (A); SP (SP) - 1 Push (H); SP (SP) - 1 Push (X); SP (SP) - 1 SP (SP + 1); Pull (A) SP (SP + 1); Pull (H) SP (SP + 1); Pull (X)
- - - - - - INH - - - - - - INH - - - - - - INH - - - - - - INH - - - - - - INH - - - - - - INH DIR INH INH IX1 IX SP1
Rotate Left through Carry
C b7 b0
--
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Central Processor Unit (CPU)
Data Sheet 95
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary (Continued)
Cycles 4 1 1 4 3 5 1 7 4 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 1 2 dd hh ll ee ff ff ff ee ff dd 3 4 4 3 2 4 5 4 1 dd hh ll ee ff ff ff ee ff 3 4 4 3 2 4 5 Source Form ROR opr RORA RORX ROR opr,X ROR ,X ROR opr,SP RSP Operand dd ff ff Address Mode Opcode 36 46 56 66 76 9E66 9C 80 81 A2 B2 C2 D2 E2 F2 9EE2 9ED2 99 9B B7 C7 D7 E7 F7 9EE7 9ED7 35 8E BF CF DF EF FF 9EEF 9EDF Effect on CCR VHINZC
Operation
Description
Rotate Right through Carry
b7 b0
C
--
DIR INH INH IX1 IX SP1
Reset Stack Pointer
SP $FF SP (SP) + 1; Pull (CCR) SP (SP) + 1; Pull (A) SP (SP) + 1; Pull (X) SP (SP) + 1; Pull (PCH) SP (SP) + 1; Pull (PCL) SP SP + 1; Pull (PCH) SP SP + 1; Pull (PCL)
- - - - - - INH
RTI
Return from Interrupt
INH
RTS SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X SBC opr,SP SBC opr,SP SEC SEI STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP STHX opr STOP STX opr STX opr STX opr,X STX opr,X STX ,X STX opr,SP STX opr,SP
Return from Subroutine
- - - - - - INH IMM DIR EXT IX2 IX1 IX SP1 SP2
Subtract with Carry
A (A) - (M) - (C)
--
Set Carry Bit Set Interrupt Mask
C1 I1
- - - - - 1 INH - - 1 - - - INH DIR EXT IX2 - IX1 IX SP1 SP2 - DIR
Store A in M
M (A)
0--
Store H:X in M Enable IRQ Pin; Stop Oscillator
(M:M + 1) (H:X) I 0; Stop Oscillator
0--
- - 0 - - - INH DIR EXT IX2 - IX1 IX SP1 SP2
Store X in M
M (X)
0--
Data Sheet 96
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor
Central Processor Unit (CPU) Opcode Map
Table 6-1. Instruction Set Summary (Continued)
Cycles 2 3 4 4 3 2 4 5 9 2 1 1 dd 3 1 1 3 2 4 2 1 2 Source Form SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X SUB opr,SP SUB opr,SP Operand ii dd hh ll ee ff ff ff ee ff ff ff Address Mode Opcode A0 B0 C0 D0 E0 F0 9EE0 9ED0 83 84 97 85 3D 4D 5D 6D 7D 9E6D 95 9F 94 Effect on CCR VHINZC
Operation
Description
Subtract
A (A) - (M)
--
IMM DIR EXT IX2 IX1 IX SP1 SP2
SWI
Software Interrupt
PC (PC) + 1; Push (PCL) SP (SP) - 1; Push (PCH) SP (SP) - 1; Push (X) SP (SP) - 1; Push (A) SP (SP) - 1; Push (CCR) SP (SP) - 1; I 1 PCH Interrupt Vector High Byte PCL Interrupt Vector Low Byte CCR (A) X (A) A (CCR)
- - 1 - - - INH
TAP TAX TPA TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP TSX TXA TXS
Transfer A to CCR Transfer A to X Transfer CCR to A
INH - - - - - - INH - - - - - - INH DIR INH INH - IX1 IX SP1
Test for Negative or Zero
(A) - $00 or (X) - $00 or (M) - $00
0--
Transfer SP to H:X Transfer X to A Transfer H:X to SP
H:X (SP) + 1 A (X) (SP) (H:X) - 1
- - - - - - INH - - - - - - INH - - - - - - INH
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Central Processor Unit (CPU)
Data Sheet 97
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary (Continued)
Cycles Source Form A C CCR dd dd rr DD DIR DIX+ ee ff EXT ff H H hh ll I ii IMD IMM INH IX IX+ IX+D IX1 IX1+ IX2 M N Operand Address Mode Opcode Effect on CCR VHINZC Accumulator Carry/borrow bit Condition code register Direct address of operand Direct address of operand and relative offset of branch instruction Direct to direct addressing mode Direct addressing mode Direct to indexed with post increment addressing mode High and low bytes of offset in indexed, 16-bit offset addressing Extended addressing mode Offset byte in indexed, 8-bit offset addressing Half-carry bit Index register high byte High and low bytes of operand address in extended addressing Interrupt mask Immediate operand byte Immediate source to direct destination addressing mode Immediate addressing mode Inherent addressing mode Indexed, no offset addressing mode Indexed, no offset, post increment addressing mode Indexed with post increment to direct addressing mode Indexed, 8-bit offset addressing mode Indexed, 8-bit offset, post increment addressing mode Indexed, 16-bit offset addressing mode Memory location Negative bit n opr PC PCH PCL REL rel rr SP1 SP2 SP U V X Z & |
Operation
Description
() -( ) # ? : --
Any bit Operand (one or two bytes) Program counter Program counter high byte Program counter low byte Relative addressing mode Relative program counter offset byte Relative program counter offset byte Stack pointer, 8-bit offset addressing mode Stack pointer 16-bit offset addressing mode Stack pointer Undefined Overflow bit Index register low byte Zero bit Logical AND Logical OR Logical EXCLUSIVE OR Contents of Negation (two's complement) Immediate value Sign extend Loaded with If Concatenated with Set or cleared Not affected
Data Sheet 98
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor
Freescale Semiconductor Central Processor Unit (CPU) 99
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Data Sheet
Table 6-2. Opcode Map
Bit Manipulation DIR DIR
MSB LSB
Branch REL 2 3 BRA 2 REL 3 BRN 2 REL 3 BHI 2 REL 3 BLS 2 REL 3 BCC 2 REL 3 BCS 2 REL 3 BNE 2 REL 3 BEQ 2 REL 3 BHCC 2 REL 3 BHCS 2 REL 3 BPL 2 REL 3 BMI 2 REL 3 BMC 2 REL 3 BMS 2 REL 3 BIL 2 REL 3 BIH 2 REL
DIR 3
INH 4
Read-Modify-Write INH IX1 5 1 NEGX 1 INH 4 CBEQX 3 IMM 7 DIV 1 INH 1 COMX 1 INH 1 LSRX 1 INH 4 LDHX 2 DIR 1 RORX 1 INH 1 ASRX 1 INH 1 LSLX 1 INH 1 ROLX 1 INH 1 DECX 1 INH 3 DBNZX 2 INH 1 INCX 1 INH 1 TSTX 1 INH 4 MOV 2 DIX+ 1 CLRX 1 INH 6 4 NEG 2 IX1 5 CBEQ 3 IX1+ 3 NSA 1 INH 4 COM 2 IX1 4 LSR 2 IX1 3 CPHX 3 IMM 4 ROR 2 IX1 4 ASR 2 IX1 4 LSL 2 IX1 4 ROL 2 IX1 4 DEC 2 IX1 5 DBNZ 3 IX1 4 INC 2 IX1 3 TST 2 IX1 4 MOV 3 IMD 3 CLR 2 IX1
SP1 9E6
IX 7
Control INH INH 8 9
IMM A 2 SUB 2 IMM 2 CMP 2 IMM 2 SBC 2 IMM 2 CPX 2 IMM 2 AND 2 IMM 2 BIT 2 IMM 2 LDA 2 IMM 2 AIS 2 IMM 2 EOR 2 IMM 2 ADC 2 IMM 2 ORA 2 IMM 2 ADD 2 IMM
DIR B
EXT C 4 SUB 3 EXT 4 CMP 3 EXT 4 SBC 3 EXT 4 CPX 3 EXT 4 AND 3 EXT 4 BIT 3 EXT 4 LDA 3 EXT 4 STA 3 EXT 4 EOR 3 EXT 4 ADC 3 EXT 4 ORA 3 EXT 4 ADD 3 EXT 3 JMP 3 EXT 5 JSR 3 EXT 4 LDX 3 EXT 4 STX 3 EXT
Register/Memory IX2 SP2 D 4 SUB 3 IX2 4 CMP 3 IX2 4 SBC 3 IX2 4 CPX 3 IX2 4 AND 3 IX2 4 BIT 3 IX2 4 LDA 3 IX2 4 STA 3 IX2 4 EOR 3 IX2 4 ADC 3 IX2 4 ORA 3 IX2 4 ADD 3 IX2 4 JMP 3 IX2 6 JSR 3 IX2 4 LDX 3 IX2 4 STX 3 IX2 9ED 5 SUB 4 SP2 5 CMP 4 SP2 5 SBC 4 SP2 5 CPX 4 SP2 5 AND 4 SP2 5 BIT 4 SP2 5 LDA 4 SP2 5 STA 4 SP2 5 EOR 4 SP2 5 ADC 4 SP2 5 ORA 4 SP2 5 ADD 4 SP2
IX1 E
SP1 9EE 4 SUB 3 SP1 4 CMP 3 SP1 4 SBC 3 SP1 4 CPX 3 SP1 4 AND 3 SP1 4 BIT 3 SP1 4 LDA 3 SP1 4 STA 3 SP1 4 EOR 3 SP1 4 ADC 3 SP1 4 ORA 3 SP1 4 ADD 3 SP1
IX F
0 5 BRSET0 3 DIR 5 BRCLR0 3 DIR 5 BRSET1 3 DIR 5 BRCLR1 3 DIR 5 BRSET2 3 DIR 5 BRCLR2 3 DIR 5 BRSET3 3 DIR 5 BRCLR3 3 DIR 5 BRSET4 3 DIR 5 BRCLR4 3 DIR 5 BRSET5 3 DIR 5 BRCLR5 3 DIR 5 BRSET6 3 DIR 5 BRCLR6 3 DIR 5 BRSET7 3 DIR 5 BRCLR7 3 DIR
1 4 BSET0 2 DIR 4 BCLR0 2 DIR 4 BSET1 2 DIR 4 BCLR1 2 DIR 4 BSET2 2 DIR 4 BCLR2 2 DIR 4 BSET3 2 DIR 4 BCLR3 2 DIR 4 BSET4 2 DIR 4 BCLR4 2 DIR 4 BSET5 2 DIR 4 BCLR5 2 DIR 4 BSET6 2 DIR 4 BCLR6 2 DIR 4 BSET7 2 DIR 4 BCLR7 2 DIR
0 1 2 3 4 5 6 7 8 9 A B C D E F
4 1 NEG NEGA 2 DIR 1 INH 5 4 CBEQ CBEQA 3 DIR 3 IMM 5 MUL 1 INH 4 1 COM COMA 2 DIR 1 INH 4 1 LSR LSRA 2 DIR 1 INH 4 3 STHX LDHX 2 DIR 3 IMM 4 1 ROR RORA 2 DIR 1 INH 4 1 ASR ASRA 2 DIR 1 INH 4 1 LSL LSLA 2 DIR 1 INH 4 1 ROL ROLA 2 DIR 1 INH 4 1 DEC DECA 2 DIR 1 INH 5 3 DBNZ DBNZA 3 DIR 2 INH 4 1 INC INCA 2 DIR 1 INH 3 1 TST TSTA 2 DIR 1 INH 5 MOV 3 DD 3 1 CLR CLRA 2 DIR 1 INH
5 3 NEG NEG 3 SP1 1 IX 6 4 CBEQ CBEQ 4 SP1 2 IX+ 2 DAA 1 INH 5 3 COM COM 3 SP1 1 IX 5 3 LSR LSR 3 SP1 1 IX 4 CPHX 2 DIR 5 3 ROR ROR 3 SP1 1 IX 5 3 ASR ASR 3 SP1 1 IX 5 3 LSL LSL 3 SP1 1 IX 5 3 ROL ROL 3 SP1 1 IX 5 3 DEC DEC 3 SP1 1 IX 6 4 DBNZ DBNZ 4 SP1 2 IX 5 3 INC INC 3 SP1 1 IX 4 2 TST TST 3 SP1 1 IX 4 MOV 2 IX+D 4 2 CLR CLR 3 SP1 1 IX
7 3 RTI BGE 1 INH 2 REL 4 3 RTS BLT 1 INH 2 REL 3 BGT 2 REL 9 3 SWI BLE 1 INH 2 REL 2 2 TAP TXS 1 INH 1 INH 1 2 TPA TSX 1 INH 1 INH 2 PULA 1 INH 2 1 PSHA TAX 1 INH 1 INH 2 1 PULX CLC 1 INH 1 INH 2 1 PSHX SEC 1 INH 1 INH 2 2 PULH CLI 1 INH 1 INH 2 2 PSHH SEI 1 INH 1 INH 1 1 CLRH RSP 1 INH 1 INH 1 NOP 1 INH 1 STOP * 1 INH 1 1 WAIT TXA 1 INH 1 INH
3 SUB 2 DIR 3 CMP 2 DIR 3 SBC 2 DIR 3 CPX 2 DIR 3 AND 2 DIR 3 BIT 2 DIR 3 LDA 2 DIR 3 STA 2 DIR 3 EOR 2 DIR 3 ADC 2 DIR 3 ORA 2 DIR 3 ADD 2 DIR 2 JMP 2 DIR 4 4 BSR JSR 2 REL 2 DIR 2 3 LDX LDX 2 IMM 2 DIR 2 3 AIX STX 2 IMM 2 DIR
MSB LSB
3 SUB 2 IX1 3 CMP 2 IX1 3 SBC 2 IX1 3 CPX 2 IX1 3 AND 2 IX1 3 BIT 2 IX1 3 LDA 2 IX1 3 STA 2 IX1 3 EOR 2 IX1 3 ADC 2 IX1 3 ORA 2 IX1 3 ADD 2 IX1 3 JMP 2 IX1 5 JSR 2 IX1 5 3 LDX LDX 4 SP2 2 IX1 5 3 STX STX 4 SP2 2 IX1
2 SUB 1 IX 2 CMP 1 IX 2 SBC 1 IX 2 CPX 1 IX 2 AND 1 IX 2 BIT 1 IX 2 LDA 1 IX 2 STA 1 IX 2 EOR 1 IX 2 ADC 1 IX 2 ORA 1 IX 2 ADD 1 IX 2 JMP 1 IX 4 JSR 1 IX 4 2 LDX LDX 3 SP1 1 IX 4 2 STX STX 3 SP1 1 IX
Central Processor Unit (CPU) Opcode Map
Inherent REL Relative Immediate IX Indexed, No Offset Direct IX1 Indexed, 8-Bit Offset Extended IX2 Indexed, 16-Bit Offset Direct-Direct IMD Immediate-Direct Indexed-Direct DIX+ Direct-Indexed *Pre-byte for stack pointer indexed instructions
INH IMM DIR EXT DD IX+D
SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset IX+ Indexed, No Offset with Post Increment IX1+ Indexed, 1-Byte Offset with Post Increment
0
High Byte of Opcode in Hexadecimal
Low Byte of Opcode in Hexadecimal
0
5 Cycles BRSET0 Opcode Mnemonic 3 DIR Number of Bytes / Addressing Mode
Central Processor Unit (CPU)
Data Sheet 100
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Central Processor Unit (CPU) Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 7. Oscillator (OSC)
7.1 Contents
7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.3 Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.3.1 CGM Reference Clock Selection . . . . . . . . . . . . . . . . . . . . 104 7.3.2 TBM Reference Clock Selection . . . . . . . . . . . . . . . . . . . . 105 7.4 7.5 7.6 Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 RC Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 X-tal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.7.1 Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . 108 7.7.2 Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . 109 7.7.3 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 109 7.7.4 CGM Oscillator Clock (CGMXCLK) . . . . . . . . . . . . . . . . . . 109 7.7.5 CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . . 109 7.7.6 Oscillator Clock to Time Base Module (OSCCLK) . . . . . . . 109 7.8 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 7.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 7.9 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . 110
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Oscillator (OSC)
Data Sheet 101
Oscillator (OSC) 7.2 Introduction
The oscillator module provides the reference clock for the clock generator module (CGM), the timebase module (TBM), and other MCU sub-systems. The oscillator module consist of three types of oscillator circuits: * * * Internal oscillator RC oscillator Crystal (x-tal) oscillator
The reference clock for the CGM and other MCU sub-systems is selected by: * * MC68HC908SR12 -- FLASH device -- oscillator selected by programming the mask option register located at $FF80. MC68HC08SR12 -- ROM device -- oscillator selected by ROMmask layer at factory.
The reference clock for the timebase module (TBM) is selected by the two bits, OSCCLK1 and OSCCLK0, in the CONFIG2 register. The internal oscillator runs continuously after a POR or reset, and is always available. The RC and crystal oscillator cannot run concurrently; one is disabled while the other is selected; because the RC and x-tal circuits share the same OSC1 pin. Figure 7-1. shows the block diagram of the oscillator module.
Data Sheet 102 Oscillator (OSC)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Oscillator (OSC) Clock Selection
To CGM and others To CGM PLL CGMXCLK CGMRCLK
To TBM OSCCLK
MOR OSCSEL1 MUX OSCSEL0 X RC I X RC I MUX
CONFIG2 OSCCLK1 OSCCLK0
To SIM (and COP) XCLK RCCLK ICLK
X-TAL OSCILLATOR
RC OSCILLATOR
INTERNAL OSCILLATOR
BUS CLOCK
From SIM
OSC1
OSC2
Figure 7-1. Oscillator Module Block Diagram
7.3 Clock Selection
Reference clocks are selectable for the following sub-systems: * CGMXCLK and CGMRCLK -- Reference clock for clock generator module (CGM) and other MCU sub-systems other than TBM and COP. This is the main reference clock for the MCU. OSCCLK -- Reference clock for timebase module (TBM).
*
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Oscillator (OSC)
Data Sheet 103
Oscillator (OSC)
7.3.1 CGM Reference Clock Selection The clock generator module (CGM) reference clock (CGMXCLK) is the reference clock input to the MCU. It is selected by programming two bits in a FLASH memory location; the mask option register (MOR), at $FF80. See 5.6 Mask Option Register (MOR).
NOTE:
On the ROM device, the oscillator is selected by a ROM-mask layer at factory.
Address: $FF80 Bit 7 Read: OSCSEL1 OSCSEL0 Write: Erased: Reset: 1 U R 1 U = Reserved 1 U 1 U 1 U 1 U 1 U 1 U R R R R R R 6 5 4 3 2 1 Bit 0
Figure 7-2. Mask Option Register (MOR) Table 7-1. CGMXCLK Clock Selection
OSCSEL1 0 0 1 OSCSEL0 0 1 0 CGMXCLK -- ICLK RCCLK OSC2 Pin -- fBUS fBUS Inverting output of X-TAL Not used Internal oscillator generates the CGMXCLK. RC oscillator generates the CGMXCLK. Internal oscillator is available after each POR or reset. X-tal oscillator generates the CGMXCLK. Internal oscillator is available after each POR or reset. Comments
1
1
XCLK
NOTE:
The internal oscillator is a free running oscillator and is available after each POR or reset. It is turned-off in stop mode by clearing the STOP_ICLKEN bit in CONFIG2.
Data Sheet 104 Oscillator (OSC)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Oscillator (OSC) Internal Oscillator
7.3.2 TBM Reference Clock Selection The timebase module reference clock (OSCCLK) is selected by configuring two bits in the CONFIG2 register, at $001D. See 5.5 Configuration Register 2 (CONFIG2).
Address: $001D Bit 7 Read: STOP_ ICLKEN Write: 0 6 STOP_ RCLKEN 0 5 4 3 2 0 CDOEN SCIBDSRC 0 0 0 1 Bit 0
STOP_ OSCCLK1 OSCCLK0 XCLKEN 0 0 0
Reset:
Figure 7-3. Configuration Register 2 (CONFIG2) Table 7-2. Timebase Module Reference Clock Selection
OSCCLK1 0 0 1 1 OSCCLK0 0 1 0 1 Timebase Clock Source Internal oscillator (ICLK) RC oscillator (RCCLK) X-tal oscillator (XCLK) Not used
NOTE:
The RCCLK or XCLK is only available if that clock is selected as the CGM reference clock, whereas the ICLK is always available.
7.4 Internal Oscillator
The internal oscillator clock (ICLK) is a free running 24kHz clock that requires no external components. It can be selected as the CGMXCLK for the CGM and MCU sub-systems; and the OSCCLK clock for the TBM. The ICLK is also the reference clock input to the computer operating properly (COP) module. Due to the simplicity of the internal oscillator, it does not have the accuracy and stability of the RC oscillator or the x-tal oscillator. Therefore, the ICLK is not suitable where an accurate bus clock is required and it should not be used as the CGMRCLK to the CGM PLL.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Oscillator (OSC)
Data Sheet 105
Oscillator (OSC)
The internal oscillator by default is always available and is free running after POR or reset. It can be stopped in Stop mode by setting the STOP_ICLKEN bit before executing the STOP instruction. Figure 7-4 shows the logical representation of components of the internal oscillator circuitry.
From SIM SIMOSCEN
To Clock Selection MUX and COP ICLK
From SIM
BUS CLOCK
CONFIG2 STOP_ICLKEN EN INTERNAL OSCILLATOR
MCU
OSC2
Figure 7-4. Internal Oscillator
7.5 RC Oscillator
The RC oscillator circuit is designed for use with external R and C to provide a clock source with tolerance less than 10%. In its typical configuration, the RC oscillator requires two external components, one R and one C. Component values should have a tolerance of 1% or less, to obtain a clock source with less than 10% tolerance. The oscillator configuration uses two components: * * CEXT REXT
Data Sheet 106 Oscillator (OSC)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Oscillator (OSC) X-tal Oscillator
From SIM SIMOSCEN
To Clock Selection MUX RCCLK
From SIM BUS CLOCK
CONFIG2 STOP_RCLKEN EN RC OSCILLATOR
MCU
OSC1 See Section 24. for component value requirements. VDD OSC2
REXT
CEXT
Figure 7-5. RC Oscillator
7.6 X-tal Oscillator
The X-tal oscillator circuit is designed for use with an external crystal or ceramic resonator to provide an accurate clock source. In its typical configuration, the X-tal oscillator is connected in a Pierce oscillator configuration, as shown in Figure 7-6. This figure shows only the logical representation of the internal components and may not represent actual circuitry. The oscillator configuration uses five components: * * * * * Crystal, X1 Fixed capacitor, C1 Tuning capacitor, C2 (can also be a fixed capacitor) Feedback resistor, RB Series resistor, RS (optional)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Oscillator (OSC)
Data Sheet 107
Oscillator (OSC)
From SIM SIMOSCEN
To Clock Selection MUX XCLK
CONFIG2 STOP_XCLKEN
MCU
OSC1 RB OSC2
RS* *RS can be zero (shorted) when used with higher-frequency crystals. Refer to manufacturer's data. See Section 24. for component value requirements. C1 C2 X1
Figure 7-6. Crystal Oscillator The series resistor (RS) is included in the diagram to follow strict Pierce oscillator guidelines and may not be required for all ranges of operation, especially with high frequency crystals. Refer to the crystal manufacturer's data for more information.
7.7 I/O Signals
The following paragraphs describe the oscillator I/O signals.
7.7.1 Crystal Amplifier Input Pin (OSC1) OSC1 pin is an input to the crystal oscillator amplifier or the input to the RC oscillator circuit.
Data Sheet 108 Oscillator (OSC)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Oscillator (OSC) Low Power Modes
7.7.2 Crystal Amplifier Output Pin (OSC2) When the x-tal oscillator is selected, OSC2 pin is the output of the crystal oscillator inverting amplifier. When the RC oscillator or internal oscillator is selected, OSC2 pin is the output of the internal bus clock.
7.7.3 Oscillator Enable Signal (SIMOSCEN) The SIMOSCEN signal from the system integration module (SIM) enables/disables the x-tal oscillator, the RC-oscillator, or the internal oscillator circuit.
7.7.4 CGM Oscillator Clock (CGMXCLK) The CGMXCLK clock is output from the x-tal oscillator, RC oscillator or the internal oscillator. This clock drives to CGM and other MCU subsystems.
7.7.5 CGM Reference Clock (CGMRCLK) This is buffered signal of CGMXCLK, it is used by the CGM as the phase-locked-loop (PLL) reference clock.
7.7.6 Oscillator Clock to Time Base Module (OSCCLK) The OSCCLK is the reference clock that drives the timebase module. See Section 12. Timebase Module (TBM).
7.8 Low Power Modes
The WAIT and STOP instructions put the MCU in low-power consumption standby modes.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Oscillator (OSC)
Data Sheet 109
Oscillator (OSC)
7.8.1 Wait Mode The WAIT instruction has no effect on the oscillator module. CGMXCLK continues to drive to the clock generator module, and OSCCLK continues to drive the timebase module.
7.8.2 Stop Mode The STOP instruction disables the x-tal or the RC oscillator circuit, and hence the CGMXCLK clock stops running. For continuous x-tal or RC oscillator operation in stop mode, set the STOP_XCLKEN (for x-tal) or STOP_RCLKEN (for RC) bit to logic 1 before entering stop mode. The internal oscillator clock continues operation in stop mode. It can be disabled by setting the STOP_ICLKEN bit to logic 1 before entering stop mode.
7.9 Oscillator During Break Mode
The oscillator continues to drive CGMXCLK when the device enters the break state.
Data Sheet 110 Oscillator (OSC)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 8. Clock Generator Module (CGM)
8.1 Contents
8.2 8.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 8.4.1 Oscillator Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.4.2 Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . . 116 8.4.3 PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.4.4 Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . . 118 8.4.5 Manual and Automatic PLL Bandwidth Modes. . . . . . . . . . 118 8.4.6 Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 8.4.7 Special Programming Exceptions . . . . . . . . . . . . . . . . . . . 124 8.4.8 Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . . 124 8.4.9 CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . 125 8.5 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.5.1 External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . 126 8.5.2 PLL Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . . 126 8.5.3 PLL Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . 126 8.5.4 Oscillator Output Frequency Signal (CGMXCLK) . . . . . . . 126 8.5.5 CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . . 126 8.5.6 CGM VCO Clock Output (CGMVCLK) . . . . . . . . . . . . . . . . 127 8.5.7 CGM Base Clock Output (CGMOUT). . . . . . . . . . . . . . . . . 127 8.5.8 CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . . 127 8.6 CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8.6.1 PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 8.6.2 PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . .130 8.6.3 PLL Multiplier Select Registers . . . . . . . . . . . . . . . . . . . . . 132 8.6.4 PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . . .133 8.6.5 PLL Reference Divider Select Register . . . . . . . . . . . . . . . 134
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM)
Data Sheet 111
Clock Generator Module (CGM)
8.7 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
8.8 Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 8.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136 8.8.3 CGM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . 136 8.9 Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . . 137 8.9.1 Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . .137 8.9.2 Parametric Influences on Reaction Time . . . . . . . . . . . . . . 137 8.9.3 Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.2 Introduction
This section describes the clock generator module (CGM). The CGM generates the base clock signal, CGMOUT, which is based on either the oscillator clock divided by two or the divided phase-locked loop (PLL) clock, CGMPCLK, divided by two. CGMOUT is the clock from which the SIM derives the system clocks, including the bus clock, which is at a frequency of CGMOUT/2. The PLL clock, CGMVCLK (an integer multiple of CGMPCLK) provides clock reference for the PWM and analog modules. The PLL is a frequency generator designed for use with a low frequency crystal (typically 32.768kHz) to generate a base frequency and dividing to a maximum bus frequency of 8MHz.
Data Sheet 112
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor
Clock Generator Module (CGM) Features
8.3 Features
Features of the CGM include: * * * * * * * * Phase-locked loop with output frequency in integer multiples of an integer dividend of the crystal reference Low-frequency crystal operation with low-power operation and high-output frequency resolution Programmable prescaler for power-of-two increases in frequency Programmable hardware voltage-controlled oscillator (VCO) for low-jitter operation Automatic bandwidth control mode for low-jitter operation Automatic frequency lock detector CPU interrupt on entry or exit from locked condition Configuration register bit to allow oscillator operation during stop mode
8.4 Functional Description
The CGM consists of three major sub-modules: * * Oscillator module -- The oscillator module generates the constant reference frequency clock, CGMRCLK (buffered CGMXCLK). Phase-locked loop (PLL) -- The PLL generates the programmable VCO frequency clock, CGMVCLK, and the divided, CGMPCLK. The CGMVCLK provides the input reference clock to the PWM and analog modules. Base clock selector circuit -- This software-controlled circuit selects either CGMXCLK divided by two or the divided VCO clock, CGMPCLK, divided by two as the base clock, CGMOUT. The SIM derives the system clocks from either CGMOUT or CGMXCLK.
*
Figure 8-1 shows the structure of the CGM. Figure 8-2 is a summary of the CGM registers.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM)
Data Sheet 113
Clock Generator Module (CGM)
OSC2
OSCILLATOR (OSC) MODULE See Section 7. Oscillator (OSC). INTERNAL OSCILLATOR RC OSCILLATOR CRYSTAL OSCILLATOR MUX
ICLK OSCCLK CGMXCLK CGMRCLK
To SIM (and COP) To Timebase Module (TBM) T0 ADC, Analog Module
OSC1
OSCSEL[1:0] OSCCLK[1:0] SIMOSCEN From SIM
PHASE-LOCKED LOOP (PLL)
CGMRDV
REFERENCE DIVIDER R
CGMRCLK BCS CLOCK SELECT CIRCUIT
A
CGMOUT
1
/2
B S*
To SIM SIMDIV2 From SIM
RDS[3:0]
VDDA
CGMXFC
VSSA VPR[1:0] VRS[7:0] L 2E
*WHEN S = 1, CGMOUT = B
CGMPCLK CGMVCLK To PWM, Analog Module
PHASE DETECTOR
LOOP FILTER
VOLTAGE CONTROLLED OSCILLATOR PLL ANALOG
LOCK DETECTOR
AUTOMATIC MODE CONTROL
INTERRUPT CONTROL
CGMINT To SIM
LOCK MUL[11:0] N CGMVDV FREQUENCY DIVIDER
AUTO
ACQ
PLLIE PRE[1:0] 2P FREQUENCY DIVIDER
PLLF
Figure 8-1. CGM Block Diagram
Data Sheet 114
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor
Clock Generator Module (CGM) Functional Description
Addr.
Register Name Read: PLL Control Register Write: (PTCL) Reset: Read: PLL Bandwidth Control Register Write: (PBWC) Reset: Read: PLL Multiplier Select Register High Write: (PMSH) Reset: Read: PLL Multiplier Select Register Low Write: (PMSL) Reset: Read: PLL VCO Range Select Register Write: (PMRS) Reset: Read: PLL Reference Divider Select Register Write: (PMDS) Reset:
Bit 7 PLLIE 0 AUTO 0 0
6 PLLF
5 PLLON
4 BCS 0 0
3 PRE1 0 0
2 PRE0 0 0
1 VPR1 0 0
Bit 0 VPR0 0 R
$0036
0 LOCK
1 ACQ
$0037
0 0
0 0
0 0
0 MUL11
0 MUL10 0 MUL2 0 VRS2 0 RDS2 0 = Reserved
0 MUL9 0 MUL1 0 VRS1 0 RDS1 0 MUL8 0 MUL0 0 VRS0 0 RDS0 1
$0038
0 MUL7 0 VRS7 0 0
0 MUL6 1 VRS6 1 0
0 MUL5 0 VRS5 0 0
0 MUL4 0 VRS4 0 0
0 MUL3 0 VRS3 0 RDS3
$0039
$003A
$003B
0
0
0
0
0 R
= Unimplemented
NOTES: 1. When AUTO = 0, PLLIE is forced clear and is read-only. 2. When AUTO = 0, PLLF and LOCK read as clear. 3. When AUTO = 1, ACQ is read-only. 4. When PLLON = 0 or VRS7:VRS0 = $0, BCS is forced clear and is read-only. 5. When PLLON = 1, the PLL programming register is read-only. 6. When BCS = 1, PLLON is forced set and is read-only.
Figure 8-2. CGM I/O Register Summary
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM)
Data Sheet 115
Clock Generator Module (CGM)
8.4.1 Oscillator Module The oscillator module provides two clock outputs CGMXCLK and CGMRCLK to the CGM module. CGMXCLK when selected, is driven to SIM module to generate the system bus clock. CGMRCLK is used by the phase-lock-loop to provide a higher frequency system bus clock and the reference clock for the PWM and analog modules. The oscillator module also provides the reference clock for the timebase module (TBM). See Section 7. Oscillator (OSC) for detailed oscillator circuit description. See Section 12. Timebase Module (TBM) for detailed description on TBM. See Section 13. Pulse Width Modulator (PWM) for detailed description on PWM module.
8.4.2 Phase-Locked Loop Circuit (PLL) The PLL is a frequency generator that can operate in either acquisition mode or tracking mode, depending on the accuracy of the output frequency. The PLL can change between acquisition and tracking modes either automatically or manually.
8.4.3 PLL Circuits The PLL consists of these circuits: * * * * * * * Voltage-controlled oscillator (VCO) Reference divider Frequency pre-scaler Modulo VCO frequency divider Phase detector Loop filter Lock detector
Data Sheet 116
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor
Clock Generator Module (CGM) Functional Description
The operating range of the VCO is programmable for a wide range of frequencies and for maximum immunity to external noise, including supply and CGMXFC noise. The VCO frequency is bound to a range from roughly one-half to twice the center-of-range frequency, fVRS. Modulating the voltage on the CGMXFC pin changes the frequency within this range. By design, fVRS is equal to the nominal center-of-range frequency, fNOM, (38.4 kHz) times a linear factor, L, and a power-of-two factor, E, or (L x 2E)fNOM. CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK. CGMRCLK runs at a frequency, fRCLK, and is fed to the PLL through a programmable modulo reference divider, which divides fRCLK by a factor, R. The divider's output is the final reference clock, CGMRDV, running at a frequency, fRDV = fRCLK/R. With an external crystal (30kHz-100kHz), always set R = 1 for specified performance. With an external high-frequency clock source, use R to divide the external frequency to between 30kHz and 100kHz. The VCO's output clock, CGMVCLK, running at a frequency, fVCLK, is fed back through a programmable pre-scaler divider and a programmable modulo divider. The pre-scaler divides the VCO clock by a power-of-two factor P (the CGMPCLK) and the modulo divider reduces the VCO clock by a factor, N. The dividers' output is the VCO feedback clock, CGMVDV, running at a frequency, fVDV = fVCLK/(N x 2P). (See 8.4.6 Programming the PLL for more information.) The phase detector then compares the VCO feedback clock, CGMVDV, with the final reference clock, CGMRDV. A correction pulse is generated based on the phase difference between the two signals. The loop filter then slightly alters the DC voltage on the external capacitor connected to CGMXFC based on the width and direction of the correction pulse. The filter can make fast or slow corrections depending on its mode, described in 8.4.4 Acquisition and Tracking Modes. The value of the external capacitor and the reference frequency determines the speed of the corrections and the stability of the PLL. The lock detector compares the frequencies of the VCO feedback clock, CGMVDV, and the final reference clock, CGMRDV. Therefore, the speed of the lock detector is directly proportional to the final reference frequency, fRDV. The circuit determines the mode of the PLL and the lock condition based on this comparison.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM) Data Sheet 117
Clock Generator Module (CGM)
8.4.4 Acquisition and Tracking Modes The PLL filter is manually or automatically configurable into one of two operating modes: * Acquisition mode -- In acquisition mode, the filter can make large frequency corrections to the VCO. This mode is used at PLL start up or when the PLL has suffered a severe noise hit and the VCO frequency is far off the desired frequency. When in acquisition mode, the ACQ bit is clear in the PLL bandwidth control register. (See 8.6.2 PLL Bandwidth Control Register.) Tracking mode -- In tracking mode, the filter makes only small corrections to the frequency of the VCO. PLL jitter is much lower in tracking mode, but the response to noise is also slower. The PLL enters tracking mode when the VCO frequency is nearly correct, such as when the PLL is selected as the base clock source. (See 8.4.8 Base Clock Selector Circuit.) The PLL is automatically in tracking mode when not in acquisition mode or when the ACQ bit is set.
*
8.4.5 Manual and Automatic PLL Bandwidth Modes The PLL can change the bandwidth or operational mode of the loop filter manually or automatically. Automatic mode is recommended for most users. In automatic bandwidth control mode (AUTO = 1), the lock detector automatically switches between acquisition and tracking modes. Automatic bandwidth control mode also is used to determine when the VCO clock, CGMVCLK, is safe to use as the source for the base clock, CGMOUT. (See 8.6.2 PLL Bandwidth Control Register.) If PLL interrupts are enabled, the software can wait for a PLL interrupt request and then check the LOCK bit. If interrupts are disabled, software can poll the LOCK bit continuously (during PLL start-up, usually) or at periodic intervals. In either case, when the LOCK bit is set, the VCO clock is safe to use as the source for the base clock. (See 8.4.8 Base Clock Selector Circuit.) If the VCO is selected as the source for the base clock and the LOCK bit is clear, the PLL has suffered a severe noise hit and the software must take appropriate action, depending on the application. (See 8.7 Interrupts for information and precautions on using interrupts.)
Data Sheet 118 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor
Clock Generator Module (CGM) Functional Description
The following conditions apply when the PLL is in automatic bandwidth control mode: * The ACQ bit (See 8.6.2 PLL Bandwidth Control Register.) is a read-only indicator of the mode of the filter. (See 8.4.4 Acquisition and Tracking Modes.) The ACQ bit is set when the VCO frequency is within a certain tolerance and is cleared when the VCO frequency is out of a certain tolerance. (See 8.9 Acquisition/Lock Time Specifications for more information.) The LOCK bit is a read-only indicator of the locked state of the PLL. The LOCK bit is set when the VCO frequency is within a certain tolerance and is cleared when the VCO frequency is out of a certain tolerance. (See 8.9 Acquisition/Lock Time Specifications for more information.) CPU interrupts can occur if enabled (PLLIE = 1) when the PLL's lock condition changes, toggling the LOCK bit. (See 8.6.1 PLL Control Register.)
*
* *
*
The PLL also may operate in manual mode (AUTO = 0). Manual mode is used by systems that do not require an indicator of the lock condition for proper operation. Such systems typically operate well below fBUSMAX.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM)
Data Sheet 119
Clock Generator Module (CGM)
The following conditions apply when in manual mode: * ACQ is a writable control bit that controls the mode of the filter. Before turning on the PLL in manual mode, the ACQ bit must be clear. Before entering tracking mode (ACQ = 1), software must wait a given time, tACQ (See 8.9 Acquisition/Lock Time Specifications.), after turning on the PLL by setting PLLON in the PLL control register (PCTL). Software must wait a given time, tAL, after entering tracking mode before selecting the PLL as the clock source to CGMOUT (BCS = 1). The LOCK bit is disabled. CPU interrupts from the CGM are disabled.
*
*
* *
8.4.6 Programming the PLL The following procedure shows how to program the PLL.
NOTE:
The round function in the following equations means that the real number should be rounded to the nearest integer number. 1. Choose the desired bus frequency, fBUSDES, or the desired VCO frequency, fVCLKDES; and then solve for the other. The relationship between fBUS and fVCLK is governed by the equation:
f VCLK = 2 x f CGMPCLK = 2 x 4
P P
x fBUS
where P is the power of two multiplier, and can be 0, 1, 2, or 3 2. Choose a practical PLL reference frequency, fRCLK, and the reference clock divider, R. Typically, the reference is 32.768kHz and R = 1. Frequency errors to the PLL are corrected at a rate of fRCLK/R. For stability and lock time reduction, this rate must be as fast as possible. The VCO frequency must be an integer multiple of this rate.
Data Sheet 120 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor
Clock Generator Module (CGM) Functional Description
The relationship between the VCO frequency, fVCLK, and the reference frequency, fRCLK, is
2N f VCLK = ----------- ( f RCLK ) R
P
where N is the integer range multiplier, between 1 and 4095. In cases where desired bus frequency has some tolerance, choose fRCLK to a value determined either by other module requirements (such as modules which are clocked by CGMXCLK), cost requirements, or ideally, as high as the specified range allows. See Section 24. Electrical Specifications. Choose the reference divider, R = 1. When the tolerance on the bus frequency is tight, choose fRCLK to an integer divisor of fBUSDES, and R = 1. If fRCLK cannot meet this requirement, use the following equation to solve for R with practical choices of fRCLK, and choose the fRCLK that gives the lowest R.
f VCLKDES f VCLKDES R = round R MAX x ------------------------- - integer ------------------------- f RCLK f RCLK
3. Calculate N:
R x f VCLKDES N = round ------------------------------------ P f x2 RCLK
4. Calculate and verify the adequacy of the VCO and bus frequencies fVCLK and fBUS.
P
2N f VCLK = ----------- ( f RCLK ) R
VCLK ---------P
f BUS =
f
2 x4
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM)
Data Sheet 121
Clock Generator Module (CGM)
5. Select the VCO's power-of-two range multiplier E, according to this table:
Frequency Range 0 < fVCLK < 9,830,400 9,830,400 fVCLK < 19,660,800 19,660,800 fVCLK < 39,321,600 NOTE: Do not program E to a value of 3. E 0 1 2
6. Select a VCO linear range multiplier, L, where fNOM = 38.4kHz
f VCLK L = round -------------------------- 2E x f NOM
7. Calculate and verify the adequacy of the VCO programmed center-of-range frequency, fVRS. The center-of-range frequency is the midpoint between the minimum and maximum frequencies attainable by the PLL.
f VRS = ( L x 2 )f NOM
E
For proper operation,
f NOM x 2 f VRS - f VCLK -------------------------2
E
8. Verify the choice of P, R, N, E, and L by comparing fVCLK to fVRS and fVCLKDES. For proper operation, fVCLK must be within the application's tolerance of fVCLKDES, and fVRS must be as close as possible to fVCLK.
NOTE:
Exceeding the recommended maximum bus frequency or VCO frequency can crash the MCU.
Data Sheet 122
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor
Clock Generator Module (CGM) Functional Description
9. Program the PLL registers accordingly: a. In the PRE bits of the PLL control register (PCTL), program the binary equivalent of P. b. In the VPR bits of the PLL control register (PCTL), program the binary equivalent of E. c. In the PLL multiplier select register low (PMSL) and the PLL multiplier select register high (PMSH), program the binary equivalent of N. d. In the PLL VCO range select register (PMRS), program the binary coded equivalent of L. e. In the PLL reference divider select register (PMDS), program the binary coded equivalent of R.
NOTE:
The values for P, E, N, L, and R can only be programmed when the PLL is off (PLLON = 0). Table 8-1 provides numeric examples (numbers are in hexadecimal notation): Table 8-1. Numeric Examples
CGMVCLK 8.0 MHz 9.8304 MHz 10.0 MHz 16 MHz 19.6608 MHz 20 MHz 29.4912 MHz 32 MHz 32 MHz 32 MHz 32 MHz CGMPCLK 8.0 MHz 9.8304 MHz 10.0 MHz 16 MHz 19.6608 MHz 20 MHz 29.4912 MHz 32 MHz 16 MHz 8 MHz 4 MHz fBUS 2.0 MHz 2.4576 MHz 2.5 MHz 4.0 MHz 4.9152 MHz 5.0 MHz 7.3728 MHz 8.0 MHz 4.0 MHz 2.0 MHz 1.0 MHz fRCLK 32.768 kHz 32.768 kHz 32.768 kHz 32.768 kHz 32.768 kHz 32.768 kHz 32.768 kHz 32.768 kHz 32.768 kHz 32.768 kHz 32.768 kHz R 1 1 1 1 1 1 1 1 1 1 1 N F5 12C 132 1E9 258 263 384 3D1 1E9 F5 7B P 0 0 0 0 0 0 0 0 1 2 3 E 0 1 1 1 2 2 2 2 2 2 2 L D1 80 83 D1 80 82 C0 D0 D0 D0 D0
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM)
Data Sheet 123
Clock Generator Module (CGM)
8.4.7 Special Programming Exceptions The programming method described in 8.4.6 Programming the PLL does not account for three possible exceptions. A value of 0 for R, N, or L is meaningless when used in the equations given. To account for these exceptions: * * A 0 value for R or N is interpreted exactly the same as a value of 1. A 0 value for L disables the PLL and prevents its selection as the source for the base clock.
(See 8.4.8 Base Clock Selector Circuit.)
8.4.8 Base Clock Selector Circuit This circuit is used to select either the oscillator clock, CGMXCLK, or the divided VCO clock, CGMPCLK, as the source of the base clock, CGMOUT. The two input clocks go through a transition control circuit that waits up to three CGMXCLK cycles and three CGMPCLK cycles to change from one clock source to the other. During this time, CGMOUT is held in stasis. The output of the transition control circuit is then divided by two to correct the duty cycle. Therefore, the bus clock frequency, which is one-half of the base clock frequency, is one-fourth the frequency of the selected clock (CGMXCLK or CGMPCLK). The BCS bit in the PLL control register (PCTL) selects which clock drives CGMOUT. The divided VCO clock cannot be selected as the base clock source if the PLL is not turned on. The PLL cannot be turned off if the divided VCO clock is selected. The PLL cannot be turned on or off simultaneously with the selection or deselection of the divided VCO clock. The divided VCO clock also cannot be selected as the base clock source if the factor L is programmed to a 0. This value would set up a condition inconsistent with the operation of the PLL, so that the PLL would be disabled and the oscillator clock would be forced as the source of the base clock.
Data Sheet 124
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor
Clock Generator Module (CGM) I/O Signals
8.4.9 CGM External Connections In its typical configuration, the CGM requires up to four external components. Figure 8-3 shows the external components for the PLL: * * Bypass capacitor, CBYP Filter network
Care should be taken with PCB routing in order to minimize signal cross talk and noise. (See 8.9 Acquisition/Lock Time Specifications for routing information, filter network and its effects on PLL performance.)
MCU
CGMXFC VSSA VDDA VDD 10 k 0.033 F 0.01 F CBYP 0.1 F
Note: Filter network in box can be replaced with a 0.47F capacitor, but will degrade stability.
Figure 8-3. CGM External Connections
8.5 I/O Signals
The following paragraphs describe the CGM I/O signals.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM)
Data Sheet 125
Clock Generator Module (CGM)
8.5.1 External Filter Capacitor Pin (CGMXFC) The CGMXFC pin is required by the loop filter to filter out phase corrections. An external filter network is connected to this pin. (See Figure 8-3.)
NOTE:
To prevent noise problems, the filter network should be placed as close to the CGMXFC pin as possible, with minimum routing distances and no routing of other signals across the network.
8.5.2 PLL Analog Power Pin (VDDA) VDDA is a power pin used by the analog portions of the PLL. Connect the VDDA pin to the same voltage potential as the VDD pin.
NOTE:
Route VDDA carefully for maximum noise immunity and place bypass capacitors as close as possible to the package.
8.5.3 PLL Analog Ground Pin (VSSA) VSSA is a ground pin used by the analog portions of the PLL. Connect the VSSA pin to the same voltage potential as the VSS pin.
NOTE:
Route VSSA carefully for maximum noise immunity and place bypass capacitors as close as possible to the package.
8.5.4 Oscillator Output Frequency Signal (CGMXCLK) CGMXCLK is the oscillator output signal. It runs at the full speed of the oscillator, and is generated directly from the crystal oscillator circuit, the RC oscillator circuit, or the internal oscillator circuit. 8.5.5 CGM Reference Clock (CGMRCLK) CGMRCLK is a buffered version of CGMXCLK, this clock is the reference clock for the phase-locked-loop circuit.
Data Sheet 126
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor
Clock Generator Module (CGM) CGM Registers
8.5.6 CGM VCO Clock Output (CGMVCLK) CGMVCLK is the clock output from the VCO. This clock can be used by the pulse width modulator (PWM) module to generate high frequency PWM signals. This clock is also used by the analog module as a reference for signal sampling. 8.5.7 CGM Base Clock Output (CGMOUT) CGMOUT is the clock output of the CGM. This signal goes to the SIM, which generates the MCU clocks. CGMOUT is a 50 percent duty cycle clock running at twice the bus frequency. CGMOUT is software programmable to be either the oscillator output, CGMXCLK, divided by two or the divided VCO clock, CGMPCLK, divided by two.
8.5.8 CGM CPU Interrupt (CGMINT) CGMINT is the interrupt signal generated by the PLL lock detector.
8.6 CGM Registers
The following registers control and monitor operation of the CGM: * * * * * PLL control register (PCTL) (See 8.6.1 PLL Control Register.) PLL bandwidth control register (PBWC) (See 8.6.2 PLL Bandwidth Control Register.) PLL multiplier select registers (PMSH and PMSL) (See 8.6.3 PLL Multiplier Select Registers.) PLL VCO range select register (PMRS) (See 8.6.4 PLL VCO Range Select Register.) PLL reference divider select register (PMDS) (See 8.6.5 PLL Reference Divider Select Register.)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM)
Data Sheet 127
Clock Generator Module (CGM)
8.6.1 PLL Control Register The PLL control register (PCTL) contains the interrupt enable and flag bits, the on/off switch, the base clock selector bit, the prescaler bits, and the VCO power-of-two range selector bits.
Address: $0036 Bit 7 Read: PLLIE Write: Reset: 0 0 1 0 0 0 0 0 6 PLLF PLLON BCS PRE1 PRE0 VPR1 VPR0 5 4 3 2 1 Bit 0
= Unimplemented
Figure 8-4. PLL Control Register (PCTL) PLLIE -- PLL Interrupt Enable Bit This read/write bit enables the PLL to generate an interrupt request when the LOCK bit toggles, setting the PLL flag, PLLF. When the AUTO bit in the PLL bandwidth control register (PBWC) is clear, PLLIE cannot be written and reads as logic 0. Reset clears the PLLIE bit. 1 = PLL interrupts enabled 0 = PLL interrupts disabled PLLF -- PLL Interrupt Flag Bit This read-only bit is set whenever the LOCK bit toggles. PLLF generates an interrupt request if the PLLIE bit also is set. PLLF always reads as logic 0 when the AUTO bit in the PLL bandwidth control register (PBWC) is clear. Clear the PLLF bit by reading the PLL control register. Reset clears the PLLF bit. 1 = Change in lock condition 0 = No change in lock condition
NOTE:
Do not inadvertently clear the PLLF bit. Any read or read-modify-write operation on the PLL control register clears the PLLF bit.
Data Sheet 128
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor
Clock Generator Module (CGM) CGM Registers
PLLON -- PLL On Bit This read/write bit activates the PLL and enables the VCO clock, CGMVCLK. PLLON cannot be cleared if the VCO clock is driving the base clock, CGMOUT (BCS = 1). (See 8.4.8 Base Clock Selector Circuit.) Reset sets this bit so that the loop can stabilize as the MCU is powering up. 1 = PLL on 0 = PLL off BCS -- Base Clock Select Bit This read/write bit selects either the oscillator output, CGMXCLK, or the divided VCO clock, CGMPCLK, as the source of the CGM output, CGMOUT. CGMOUT frequency is one-half the frequency of the selected clock. BCS cannot be set while the PLLON bit is clear. After toggling BCS, it may take up to three CGMXCLK and three CGMPCLK cycles to complete the transition from one source clock to the other. During the transition, CGMOUT is held in stasis. (See 8.4.8 Base Clock Selector Circuit.) Reset clears the BCS bit. 1 = CGMPCLK divided by two drives CGMOUT 0 = CGMXCLK divided by two drives CGMOUT
NOTE:
PLLON and BCS have built-in protection that prevents the base clock selector circuit from selecting the VCO clock as the source of the base clock if the PLL is off. Therefore, PLLON cannot be cleared when BCS is set, and BCS cannot be set when PLLON is clear. If the PLL is off (PLLON = 0), selecting CGMPCLK requires two writes to the PLL control register. (See 8.4.8 Base Clock Selector Circuit.) PRE1 and PRE0 -- Prescaler Program Bits These read/write bits control a prescaler that selects the prescaler power-of-two multiplier, P. (See 8.4.3 PLL Circuits and 8.4.6 Programming the PLL.) PRE1 and PRE0 cannot be written when the PLLON bit is set. Reset clears these bits. These prescaler bits affects the relationship between the VCO clock and the final system bus clock.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM)
Data Sheet 129
Clock Generator Module (CGM)
Table 8-2. PRE1 and PRE0 Programming
PRE1 and PRE0 00 01 10 11 P 0 1 2 3 Prescaler Multiplier 1 2 4 8
VPR1 and VPR0 -- VCO Power-of-Two Range Select Bits These read/write bits control the VCO's hardware power-of-two range multiplier E that, in conjunction with L (See 8.4.3 PLL Circuits, 8.4.6 Programming the PLL, and 8.6.4 PLL VCO Range Select Register.) controls the hardware center-of-range frequency, fVRS. VPR1:VPR0 cannot be written when the PLLON bit is set. Reset clears these bits. Table 8-3. VPR1 and VPR0 Programming
VPR1 and VPR0 00 01 10 E 0 1 2 VCO Power-of-Two Range Multiplier 1 2 4
NOTE: Do not program E to a value of 3.
8.6.2 PLL Bandwidth Control Register The PLL bandwidth control register (PBWC): * * * * Selects automatic or manual (software-controlled) bandwidth control mode Indicates when the PLL is locked In automatic bandwidth control mode, indicates when the PLL is in acquisition or tracking mode In manual operation, forces the PLL into acquisition or tracking mode
Data Sheet 130
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor
Clock Generator Module (CGM) CGM Registers
Address:
$0037 Bit 7 6 LOCK AUTO ACQ 0 0 0 0 R 0 = Reserved 0 5 4 0 3 0 2 0 1 0 R Bit 0
Read: Write: Reset: 0
= Unimplemented
Figure 8-5. PLL Bandwidth Control Register (PBWCR) AUTO -- Automatic Bandwidth Control Bit This read/write bit selects automatic or manual bandwidth control. When initializing the PLL for manual operation (AUTO = 0), clear the ACQ bit before turning on the PLL. Reset clears the AUTO bit. 1 = Automatic bandwidth control 0 = Manual bandwidth control LOCK -- Lock Indicator Bit When the AUTO bit is set, LOCK is a read-only bit that becomes set when the VCO clock, CGMVCLK, is locked (running at the programmed frequency). When the AUTO bit is clear, LOCK reads as logic 0 and has no meaning. The write one function of this bit is reserved for test, so this bit must always be written a 0. Reset clears the LOCK bit. 1 = VCO frequency correct or locked 0 = VCO frequency incorrect or unlocked ACQ -- Acquisition Mode Bit When the AUTO bit is set, ACQ is a read-only bit that indicates whether the PLL is in acquisition mode or tracking mode. When the AUTO bit is clear, ACQ is a read/write bit that controls whether the PLL is in acquisition or tracking mode. In automatic bandwidth control mode (AUTO = 1), the last-written value from manual operation is stored in a temporary location and is recovered when manual operation resumes. Reset clears this bit, enabling acquisition mode. 1 = Tracking mode 0 = Acquisition mode
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM)
Data Sheet 131
Clock Generator Module (CGM)
8.6.3 PLL Multiplier Select Registers The PLL multiplier select registers (PMSH and PMSL) contain the programming information for the modulo feedback divider.
Address: $0038 Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 0 6 0 5 0 4 0 MUL11 MUL10 MUL9 MUL8 3 2 1 Bit 0
= Unimplemented
Figure 8-6. PLL Multiplier Select Register High (PMSH)
Address: $0039 Bit 7 Read: MUL7 Write: Reset: 0 1 0 0 0 0 0 0 MUL6 MUL5 MUL4 MUL3 MUL2 MUL1 MUL0 6 5 4 3 2 1 Bit 0
Figure 8-7. PLL Multiplier Select Register Low (PMSL) MUL[11:0] -- Multiplier Select Bits These read/write bits control the modulo feedback divider that selects the VCO frequency multiplier N. (See 8.4.3 PLL Circuits and 8.4.6 Programming the PLL.) A value of $0000 in the multiplier select registers configure the modulo feedback divider the same as a value of $0001. Reset initializes the registers to $0040 for a default multiply value of 64.
NOTE:
The multiplier select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1).
Data Sheet 132
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor
Clock Generator Module (CGM) CGM Registers
8.6.4 PLL VCO Range Select Register The PLL VCO range select register (PMRS) contains the programming information required for the hardware configuration of the VCO.
Address: $003A Bit 7 Read: VRS7 Write: Reset: 0 1 0 0 0 0 0 0 VRS6 VRS5 VRS4 VRS3 VRS2 VRS1 VRS0 6 5 4 3 2 1 Bit 0
Figure 8-8. PLL VCO Range Select Register (PMRS) VRS[7:0] -- VCO Range Select Bits These read/write bits control the hardware center-of-range linear multiplier L which, in conjunction with E (See 8.4.3 PLL Circuits, 8.4.6 Programming the PLL, and 8.6.1 PLL Control Register.), controls the hardware center-of-range frequency, fVRS. VRS[7:0] cannot be written when the PLLON bit in the PCTL is set. (See 8.4.7 Special Programming Exceptions.) A value of $00 in the VCO range select register disables the PLL and clears the BCS bit in the PLL control register (PCTL). (See 8.4.8 Base Clock Selector Circuit and 8.4.7 Special Programming Exceptions.). Reset initializes the register to $40 for a default range multiply value of 64.
NOTE:
The VCO range select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1) and such that the VCO clock cannot be selected as the source of the base clock (BCS = 1) if the VCO range select bits are all clear. The PLL VCO range select register must be programmed correctly. Incorrect programming can result in failure of the PLL to achieve lock.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM)
Data Sheet 133
Clock Generator Module (CGM)
8.6.5 PLL Reference Divider Select Register The PLL reference divider select register (PMDS) contains the programming information for the modulo reference divider.
Address: $003B Bit 7 Read: Write: Reset:
0
6 0
5 0
4 0
3 RDS3
2 RDS2 0
1 RDS1 0
Bit 0 RDS0 1
0
0
0
0
0
= Unimplemented
Figure 8-9. PLL Reference Divider Select Register (PMDS) RDS[3:0] -- Reference Divider Select Bits These read/write bits control the modulo reference divider that selects the reference division factor, R. (See 8.4.3 PLL Circuits and 8.4.6 Programming the PLL.) RDS[3:0] cannot be written when the PLLON bit in the PCTL is set. A value of $00 in the reference divider select register configures the reference divider the same as a value of $01. (See 8.4.7 Special Programming Exceptions.) Reset initializes the register to $01 for a default divide value of 1.
NOTE: NOTE:
The reference divider select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1). The default divide value of 1 is recommended for all applications.
Data Sheet 134
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor
Clock Generator Module (CGM) Interrupts
8.7 Interrupts
When the AUTO bit is set in the PLL bandwidth control register (PBWC), the PLL can generate a CPU interrupt request every time the LOCK bit changes state. The PLLIE bit in the PLL control register (PCTL) enables CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL, becomes set whether interrupts are enabled or not. When the AUTO bit is clear, CPU interrupts from the PLL are disabled and PLLF reads as logic 0. Software should read the LOCK bit after a PLL interrupt request to see if the request was due to an entry into lock or an exit from lock. When the PLL enters lock, the divided VCO clock, CGMPCLK, divided by two can be selected as the CGMOUT source by setting BCS in the PCTL. When the PLL exits lock, the VCO clock frequency is corrupt, and appropriate precautions should be taken. If the application is not frequency sensitive, interrupts should be disabled to prevent PLL interrupt service routines from impeding software performance or from exceeding stack limitations.
NOTE:
Software can select the CGMPCLK divided by two as the CGMOUT source even if the PLL is not locked (LOCK = 0). Therefore, software should make sure the PLL is locked before setting the BCS bit.
8.8 Special Modes
The WAIT instruction puts the MCU in low power-consumption standby modes. 8.8.1 Wait Mode The WAIT instruction does not affect the CGM. Before entering wait mode, software can disengage and turn off the PLL by clearing the BCS and PLLON bits in the PLL control register (PCTL) to save power. Less power-sensitive applications can disengage the PLL without turning it off, so that the PLL clock is immediately available at WAIT exit. This would be the case also when the PLL is to wake the MCU from wait mode, such as when the PLL is first enabled and waiting for LOCK or LOCK is lost.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM) Data Sheet 135
Clock Generator Module (CGM)
8.8.2 Stop Mode If the oscillator stop mode enable bit (STOP_ICLKEN, STOP_RCLKEN, or STOP_XCLKEN in CONFIG2 register) for the selected oscillator is configured to disabled the oscillator in stop mode, then the STOP instruction disables the CGM (oscillator and phase locked loop) and holds low all CGM outputs (CGMOUT, CGMVCLK, CGMPCLK, and CGMINT). If the STOP instruction is executed with the divided VCO clock, CGMPCLK, divided by two driving CGMOUT, the PLL automatically clears the BCS bit in the PLL control register (PCTL), thereby selecting the oscillator clock, CGMXCLK, divided by two as the source of CGMOUT. When the MCU recovers from STOP, the crystal clock divided by two drives CGMOUT and BCS remains clear. If the oscillator stop mode enable bit is configured for continuous oscillator operation in stop mode, then the phase locked loop is shut off but the CGMXCLK will continue to drive the SIM and other MCU subsystems.
8.8.3 CGM During Break Interrupts The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. (See 9.8.3 SIM Break Flag Control Register.) To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the PLLF bit during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write the PLL control register during the break state without affecting the PLLF bit.
Data Sheet 136
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor
Clock Generator Module (CGM) Acquisition/Lock Time Specifications
8.9 Acquisition/Lock Time Specifications
The acquisition and lock times of the PLL are, in many applications, the most critical PLL design parameters. Proper design and use of the PLL ensures the highest stability and lowest acquisition/lock times.
8.9.1 Acquisition/Lock Time Definitions Typical control systems refer to the acquisition time or lock time as the reaction time, within specified tolerances, of the system to a step input. In a PLL, the step input occurs when the PLL is turned on or when it suffers a noise hit. The tolerance is usually specified as a percent of the step input or when the output settles to the desired value plus or minus a percent of the frequency change. Therefore, the reaction time is constant in this definition, regardless of the size of the step input. For example, consider a system with a 5 percent acquisition time tolerance. If a command instructs the system to change from 0Hz to 1MHz, the acquisition time is the time taken for the frequency to reach 1MHz 50kHz. 50kHz = 5% of the 1MHz step input. If the system is operating at 1MHz and suffers a -100kHz noise hit, the acquisition time is the time taken to return from 900kHz to 1MHz 5kHz. 5kHz = 5% of the 100kHz step input. Other systems refer to acquisition and lock times as the time the system takes to reduce the error between the actual output and the desired output to within specified tolerances. Therefore, the acquisition or lock time varies according to the original error in the output. Minor errors may not even be registered. Typical PLL applications prefer to use this definition because the system requires the output frequency to be within a certain tolerance of the desired frequency regardless of the size of the initial error.
8.9.2 Parametric Influences on Reaction Time Acquisition and lock times are designed to be as short as possible while still providing the highest possible stability. These reaction times are not constant, however. Many factors directly and indirectly affect the acquisition time.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM) Data Sheet 137
Clock Generator Module (CGM)
The most critical parameter which affects the reaction times of the PLL is the reference frequency, fRDV. This frequency is the input to the phase detector and controls how often the PLL makes corrections. For stability, the corrections must be small compared to the desired frequency, so several corrections are required to reduce the frequency error. Therefore, the slower the reference the longer it takes to make these corrections. This parameter is under user control via the choice of crystal frequency fXCLK and the R value programmed in the reference divider. (See 8.4.3 PLL Circuits, 8.4.6 Programming the PLL, and 8.6.5 PLL Reference Divider Select Register.) Another critical parameter is the external filter network. The PLL modifies the voltage on the VCO by adding or subtracting charge from capacitors in this network. Therefore, the rate at which the voltage changes for a given frequency error (thus change in charge) is proportional to the capacitance. The size of the capacitor also is related to the stability of the PLL. If the capacitor is too small, the PLL cannot make small enough adjustments to the voltage and the system cannot lock. If the capacitor is too large, the PLL may not be able to adjust the voltage in a reasonable time. (See 8.9.3 Choosing a Filter.) Also important is the operating voltage potential applied to VDDA. The power supply potential alters the characteristics of the PLL. A fixed value is best. Variable supplies, such as batteries, are acceptable if they vary within a known range at very slow speeds. Noise on the power supply is not acceptable, because it causes small frequency errors which continually change the acquisition time of the PLL. Temperature and processing also can affect acquisition time because the electrical characteristics of the PLL change. The part operates as specified as long as these influences stay within the specified limits. External factors, however, can cause drastic changes in the operation of the PLL. These factors include noise injected into the PLL through the filter capacitor, filter capacitor leakage, stray impedances on the circuit board, and even humidity or circuit board contamination.
Data Sheet 138
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor
Clock Generator Module (CGM) Acquisition/Lock Time Specifications
8.9.3 Choosing a Filter As described in 8.9.2 Parametric Influences on Reaction Time, the external filter network is critical to the stability and reaction time of the PLL. The PLL is also dependent on reference frequency and supply voltage. Either of the filter networks in Figure 8-10 is recommended when using a 32.768kHz reference clock (CGMRCLK). Figure 8-10 (a) is used for applications requiring better stability. Figure 8-10 (b) is used in low-cost applications where stability is not critical.
CGMXFC CGMXFC
10 k 0.033 F
0.01 F
0.47 F
VSSA
VSSA
(a)
(b)
Figure 8-10. PLL Filter
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Clock Generator Module (CGM)
Data Sheet 139
Clock Generator Module (CGM)
Data Sheet 140
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Clock Generator Module (CGM) Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 9. System Integration Module (SIM)
9.1 Contents
9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . 144 9.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9.3.2 Clock Start-up from POR or LVI Reset. . . . . . . . . . . . . . . . 145 9.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . 146 9.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . 146 9.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . 147 9.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148 9.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . 149 9.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 9.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .150 9.4.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . 150 9.4.2.6 Monitor Mode Entry Module Reset. . . . . . . . . . . . . . . . . 150 9.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . 151 9.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . 151 9.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . 151 9.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152 9.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 9.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.6.1.3 Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . .155 9.6.1.4 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . 155 9.6.1.5 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . 157 9.6.1.6 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . 157 9.6.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 9.6.3 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor System Integration Module (SIM) Data Sheet 141
System Integration Module (SIM)
9.6.4 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 158
9.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 9.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159 9.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 9.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 9.8.1 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 162 9.8.2 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . 163 9.8.3 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 164
9.2 Introduction
This section describes the system integration module (SIM). Together with the CPU, the SIM controls all MCU activities. A block diagram of the SIM is shown in Figure 9-1. Table 9-1 is a summary of the SIM input/output (I/O) registers. The SIM is a system state controller that coordinates CPU and exception timing. The SIM is responsible for: * Bus clock generation and control for CPU and peripherals: - Stop/wait/reset/break entry and recovery - Internal clock control * * Master reset control, including power-on reset (POR) and COP timeout Interrupt control: - Acknowledge timing - Arbitration control timing - Vector address generation * * CPU enable/disable timing Modular architecture expandable to 128 interrupt sources
Table 9-1 shows the internal signal names used in this section.
Data Sheet 142
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) Introduction
MODULE STOP MODULE WAIT STOP/WAIT CONTROL CPU STOP (FROM CPU) CPU WAIT (FROM CPU) SIMOSCEN (TO CGM, OSC) SIM COUNTER COP CLOCK
ICLK (FROM OSC) CGMOUT (FROM CGM) /2
VDD INTERNAL PULLUP DEVICE RESET PIN LOGIC
CLOCK CONTROL
CLOCK GENERATORS
INTERNAL CLOCKS
POR CONTROL RESET PIN CONTROL SIM RESET STATUS REGISTER MASTER RESET CONTROL
LVI (FROM LVI MODULE) ILLEGAL OPCODE (FROM CPU) ILLEGAL ADDRESS (FROM ADDRESS MAP DECODERS) COP (FROM COP MODULE)
RESET
INTERRUPT CONTROL AND PRIORITY DECODE
INTERRUPT SOURCES CPU INTERFACE
Figure 9-1. SIM Block Diagram Table 9-1. Signal Name Conventions
Signal Name ICLK CGMXCLK CGMVCLK, CGMPCLK CGMOUT IAB IDB PORRST IRST R/W Internal oscillator clock Selected oscillator clock from oscillator module PLL output and the divided PLL output CGMPCLK-based or oscillator-based clock output from CGM module (Bus clock = CGMOUT / 2) Internal address bus Internal data bus Signal from the power-on reset module to the SIM Internal reset signal Read/write signal Description
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor System Integration Module (SIM)
Data Sheet 143
System Integration Module (SIM)
Addr.
Register Name
Bit 7 R
6 R
5 R
4 R
3 R
2 R
1 SBSW Note 0
Bit 0 R
Read: SIM Break Status Register $FE00 Write: (SBSR) Reset: Note: Writing a logic 0 clears SBSW. Read: SIM Reset Status Register $FE01 Write: (SRSR) POR: Read: SIM Break Flag Control Register Write: (SBFCR) Reset:
POR
PIN
COP
ILOP
ILAD
0
LVI
0
1 BCFE 0 IF6 R 0 IF14 R 0 0 R 0
0 R
0 R
0 R
0 R
0 R
0 R
0 R
$FE03
Read: Interrupt Status Register 1 Write: $FE04 (INT1) Reset: Read: Interrupt Status Register 2 $FE05 Write: (INT2) Reset: Read: Interrupt Status Register 3 $FE06 Write: (INT3) Reset:
IF5 R 0 IF13 R 0 0 R 0
IF4 R 0 IF12 R 0 0 R 0
IF3 R 0 IF11 R 0 0 R 0
IF2 R 0 IF10 R 0 0 R 0 R
IF1 R 0 IF9 R 0 IF17 R 0 = Reserved
0 R 0 IF8 R 0 IF16 R 0
0 R 0 IF7 R 0 IF15 R 0
= Unimplemented
Figure 9-2. SIM I/O Register Summary
9.3 SIM Bus Clock Control and Generation
The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, CGMOUT, as shown in Figure 9-3. This clock can come from either the oscillator module or from the on-chip PLL. (See Section 8. Clock Generator Module (CGM).)
Data Sheet 144
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) SIM Bus Clock Control and Generation
OSC2 OSCILLATOR (OSC) MODULE OSC1
OSCCLK
TO TBM
CGMXCLK
TO TIM, ADC
ICLK STOP MODE CLOCK ENABLE SIGNALS FROM CONFIG2
SIM COUNTER SYSTEM INTEGRATION MODULE
SIMOSCEN IT12 TO REST OF MCU IT23 TO REST OF MCU
CGMRCLK CGMOUT PHASE-LOCKED LOOP (PLL)
/2
BUS CLOCK GENERATORS
SIMDIV2
PTC1 MONITOR MODE USER MODE
CGMVCLK
TO PWM
Figure 9-3. CGM Clock Signals
9.3.1 Bus Timing In user mode, the internal bus frequency is either the oscillator output (CGMXCLK) divided by four or the divided PLL output (CGMPCLK) divided by four.
9.3.2 Clock Start-up from POR or LVI Reset When the power-on reset module or the low-voltage inhibit module generates a reset, the clocks to the CPU and peripherals are inactive and held in an inactive phase until after the 4096 ICLK cycle POR timeout has completed. The RST pin is driven low by the SIM during this entire period. The IBUS clocks start upon completion of the timeout.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor System Integration Module (SIM)
Data Sheet 145
System Integration Module (SIM)
9.3.3 Clocks in Stop Mode and Wait Mode Upon exit from stop mode by an interrupt, break, or reset, the SIM allows ICLK to clock the SIM counter. The CPU and peripheral clocks do not become active until after the stop delay timeout. This timeout is selectable as 4096 or 32 ICLK cycles. (See 9.7.2 Stop Mode.) In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.
9.4 Reset and System Initialization
The MCU has these reset sources: * * * * * * Power-on reset module (POR) External reset pin (RST) Computer operating properly module (COP) Low-voltage inhibit module (LVI) Illegal opcode Illegal address
All of these resets produce the vector $FFFE:$FFFF ($FEFE:$FEFF in monitor mode) and assert the internal reset signal (IRST). IRST causes all registers to be returned to their default values and all modules to be returned to their reset states. An internal reset clears the SIM counter (see 9.5 SIM Counter), but an external reset does not. Each of the resets sets a corresponding bit in the SIM reset status register (SRSR). (See 9.8 SIM Registers.)
Data Sheet 146
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) Reset and System Initialization
9.4.1 External Pin Reset The RST pin circuit includes an internal pull-up device. Pulling the asynchronous RST pin low halts all processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for a minimum of 67 ICLK cycles, assuming that neither the POR nor the LVI was the source of the reset. See Table 9-2 for details. Figure 9-4 shows the relative timing. Table 9-2. PIN Bit Set Timing
Reset Type POR/LVI All others Number of Cycles Required to Set PIN 4163 (4096 + 64 + 3) 67 (64 + 3)
ICLK
RST
IAB
PC
VECT H VECT L
Figure 9-4. External Reset Timing
9.4.2 Active Resets from Internal Sources All internal reset sources actively pull the RST pin low for 32 ICLK cycles to allow resetting of external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles (see Figure 9-5). An internal reset can be caused by an illegal address, illegal opcode, COP timeout, LVI, or POR (see Figure 9-6).
NOTE:
For LVI or POR resets, the SIM cycles through 4096 + 32 ICLK cycles during which the SIM forces the RST pin low. The internal reset signal then follows the sequence from the falling edge of RST shown in Figure 9-5.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor System Integration Module (SIM)
Data Sheet 147
System Integration Module (SIM)
IRST
RST
RST PULLED LOW BY MCU 32 CYCLES 32 CYCLES
ICLK
IAB
VECTOR HIGH
Figure 9-5. Internal Reset Timing The COP reset is asynchronous to the bus clock.
ILLEGAL ADDRESS RST ILLEGAL OPCODE RST COPRST LVI POR
INTERNAL RESET
Figure 9-6. Sources of Internal Reset The active reset feature allows the part to issue a reset to peripherals and other chips within a system built around the MCU. 9.4.2.1 Power-On Reset When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate that power-on has occurred. The external reset pin (RST) is held low while the SIM counter counts out 4096 + 32 ICLK cycles. Thirty-two ICLK cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. At power-on, these events occur: * * * * * * A POR pulse is generated. The internal reset signal is asserted. The SIM enables CGMOUT. Internal clocks to the CPU and modules are held inactive for 4096 ICLK cycles to allow stabilization of the oscillator. The RST pin is driven low during the oscillator stabilization time. The POR bit of the SIM reset status register (SRSR) is set and all other bits in the register are cleared.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor
Data Sheet 148
System Integration Module (SIM) Reset and System Initialization
OSC1
PORRST 4096 CYCLES ICLK 32 CYCLES 32 CYCLES
CGMOUT
RST IRST
IAB
$FFFE
$FFFF
Figure 9-7. POR Recovery 9.4.2.2 Computer Operating Properly (COP) Reset An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down the RST pin for all internal reset sources. To prevent a COP module timeout, write any value to location $FFFF. Writing to location $FFFF clears the COP counter and bits 12 through 5 of the SIM counter. The SIM counter output, which occurs at least every 213 - 24 ICLK cycles, drives the COP counter. The COP should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first timeout. The COP module is disabled if the RST pin or the IRQ1 pin is held at VTST while the MCU is in monitor mode. The COP module can be disabled only through combinational logic conditioned with the high voltage signal on the RST or the IRQ1 pin. This prevents the COP from becoming disabled as a result of external noise. During a break state, VTST on the RST pin disables the COP module.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor System Integration Module (SIM)
Data Sheet 149
System Integration Module (SIM)
9.4.2.3 Illegal Opcode Reset The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the SIM reset status register (SRSR) and causes a reset. If the stop enable bit, STOP, in the mask option register is logic 0, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all internal reset sources. 9.4.2.4 Illegal Address Reset An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down the RST pin for all internal reset sources. 9.4.2.5 Low-Voltage Inhibit (LVI) Reset The low-voltage inhibit module (LVI) asserts its output to the SIM when the VDD voltage falls to the LVITRIPF voltage. The LVI bit in the SIM reset status register (SRSR) is set, and the external reset pin (RST) is held low while the SIM counter counts out 4096 + 32 ICLK cycles. Thirty-two ICLK cycles later, the CPU is released from reset to allow the reset vector sequence to occur. The SIM actively pulls down the RST pin for all internal reset sources. 9.4.2.6 Monitor Mode Entry Module Reset The monitor mode entry module reset asserts its output to the SIM when monitor mode is entered in the condition where the reset vectors are blank ($FF). (See Section 10. Monitor ROM (MON).) When MODRST gets asserted, an internal reset occurs. The SIM actively pulls down the RST pin for all internal reset sources.
Data Sheet 150
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) SIM Counter
9.5 SIM Counter
The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as a prescaler for the computer operating properly module (COP). The SIM counter overflow supplies the clock for the COP module. The SIM counter is 12 bits long and is clocked by the falling edge of ICLK.
9.5.1 SIM Counter During Power-On Reset The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized, it enables the clock generation module (CGM) to drive the bus clock state machine.
9.5.2 SIM Counter During Stop Mode Recovery The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the configuration register 1 (CONFIG1). If the SSREC bit is a logic 1, then the stop recovery is reduced from the normal delay of 4096 ICLK cycles down to 32 ICLK cycles. This is ideal for applications using canned oscillators that do not require long start-up times from stop mode. External crystal applications should use the full stop recovery time, that is, with SSREC cleared.
9.5.3 SIM Counter and Reset States External reset has no effect on the SIM counter. (See 9.7.2 Stop Mode for details.) The SIM counter is free-running after all reset states. (See 9.4.2 Active Resets from Internal Sources for counter control and internal reset recovery sequences.)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor System Integration Module (SIM)
Data Sheet 151
System Integration Module (SIM) 9.6 Exception Control
Normal, sequential program execution can be changed in three different ways: * Interrupts: - Maskable hardware CPU interrupts - Non-maskable software interrupt instruction (SWI) * * 9.6.1 Interrupts At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers the CPU register contents from the stack so that normal processing can resume. Figure 9-8 shows interrupt entry timing, and Figure 9-9 shows interrupt recovery timing.
MODULE INTERRUPT I-BIT IAB IDB R/W DUMMY DUMMY SP SP - 1 SP - 2 X SP - 3 A SP - 4 CCR VECT H VECT L START ADDR OPCODE
Reset Break interrupts
PC - 1[7:0] PC - 1[15:8]
V DATA H
V DATA L
Figure 9-8. Interrupt Entry Timing
MODULE INTERRUPT I-BIT IAB IDB R/W SP - 4 CCR SP - 3 A SP - 2 X SP - 1 SP PC PC + 1 OPCODE OPERAND
PC - 1[15:8] PC - 1[7:0]
Figure 9-9. Interrupt Recovery Timing
Data Sheet 152 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) Exception Control
Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared). (See Figure 9-10.)
FROM RESET
BREAK I BIT SET? INTERRUPT? NO YES
YES
I-BIT SET? NO IRQ1 INTERRUPT? NO YES
AS MANY INTERRUPTS AS EXIST ON CHIP
STACK CPU REGISTERS SET I-BIT LOAD PC WITH INTERRUPT VECTOR
FETCH NEXT INSTRUCTION
SWI INSTRUCTION? NO RTI INSTRUCTION? NO
YES
YES
UNSTACK CPU REGISTERS
EXECUTE INSTRUCTION
Figure 9-10. Interrupt Processing
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor System Integration Module (SIM)
Data Sheet 153
System Integration Module (SIM)
9.6.1.1 Hardware Interrupts A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the condition code register) and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed. If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 9-11 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed.
CLI LDA #$FF BACKGROUND ROUTINE
INT1
PSHH INT1 INTERRUPT SERVICE ROUTINE PULH RTI
INT2
PSHH INT2 INTERRUPT SERVICE ROUTINE PULH RTI
Figure 9-11. Interrupt Recognition Example The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation.
NOTE:
To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor
Data Sheet 154
System Integration Module (SIM) Exception Control
9.6.1.2 SWI Instruction The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register.
NOTE:
A software interrupt pushes PC onto the stack. A software interrupt does not push PC - 1, as a hardware interrupt does.
9.6.1.3 Interrupt Status Registers The flags in the interrupt status registers identify maskable interrupt sources. Table 9-3 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging. 9.6.1.4 Interrupt Status Register 1
Address: $FE04 Bit 7 Read: Write: Reset: IF6 R 0 R 6 IF5 R 0 = Reserved 5 IF4 R 0 4 IF3 R 0 3 IF2 R 0 2 IF1 R 0 1 0 R 0 Bit 0 0 R 0
Figure 9-12. Interrupt Status Register 1 (INT1) IF6-IF1 -- Interrupt Flags 6-1 These flags indicate the presence of interrupt requests from the sources shown in Table 9-3. 1 = Interrupt request present 0 = No interrupt request present Bit 0 and Bit 1 -- Always read 0
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor System Integration Module (SIM)
Data Sheet 155
System Integration Module (SIM)
Table 9-3. Interrupt Sources
Priority Lowest INT Flag IF17 IF16 IF15 IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 IF6 IF5 IF4 IF3 IF2 IF1 Vector Address $FFDA $FFDB $FFDC $FFDD $FFDE $FFDF $FFE0 $FFE1 $FFE2 $FFE3 $FFE4 $FFE5 $FFE6 $FFE7 $FFE8 $FFE9 $FFEA $FFEB $FFEC $FFED $FFEE $FFEF $FFF0 $FFF1 $FFF2 $FFF3 $FFF4 $FFF5 $FFF6 $FFF7 $FFF8 $FFF9 $FFFA $FFFB $FFFC $FFFD $FFFE $FFFF Interrupt Source Timebase Module Analog Module ADC Conversion Complete Keyboard SCI Transmit SCI Receive SCI Error MMIIC TIM2 Overflow TIM2 Channel 1 TIM2 Channel 0 TIM1 Overflow TIM1 Channel 1 TIM1 Channel 0 PLL IRQ2 IRQ1 SWI Reset
Highest
Data Sheet 156
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) Exception Control
9.6.1.5 Interrupt Status Register 2
Address: $FE05 Bit 7 Read: Write: Reset: IF14 R 0 R 6 IF13 R 0 = Reserved 5 IF12 R 0 4 IF11 R 0 3 IF10 R 0 2 IF9 R 0 1 IF8 R 0 Bit 0 IF7 R 0
Figure 9-13. Interrupt Status Register 2 (INT2) IF14-IF7 -- Interrupt Flags 14-7 These flags indicate the presence of interrupt requests from the sources shown in Table 9-3. 1 = Interrupt request present 0 = No interrupt request present 9.6.1.6 Interrupt Status Register 3
Address: $FE06 Bit 7 Read: Write: Reset: 0 R 0 R 6 0 R 0 = Reserved 5 0 R 0 4 0 R 0 3 0 R 0 2 IF17 R 0 1 IF16 R 0 Bit 0 IF15 R 0
Figure 9-14. Interrupt Status Register 3 (INT3) IF17-IF15 -- Interrupt Flags 17-15 These flags indicate the presence of an interrupt request from the source shown in Table 9-3. 1 = Interrupt request present 0 = No interrupt request present
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor System Integration Module (SIM)
Data Sheet 157
System Integration Module (SIM)
9.6.2 Reset All reset sources always have equal and highest priority and cannot be arbitrated.
9.6.3 Break Interrupts The break module can stop normal program flow at a softwareprogrammable break point by asserting its break interrupt output. (See Section 23. Break Module (BRK).) The SIM puts the CPU into the break state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to see how each module is affected by the break state.
9.6.4 Status Flag Protection in Break Mode The SIM controls whether status flags contained in other modules can be cleared during break mode. The user can select whether flags are protected from being cleared by properly initializing the break clear flag enable bit (BCFE) in the SIM break flag control register (SBFCR). Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This protection allows registers to be freely read and written during break mode without losing status flag information. Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a 2-step clearing mechanism -- for example, a read of one register followed by the read or write of another -- are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal.
Data Sheet 158
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) Low-Power Modes
9.7 Low-Power Modes
Executing the WAIT or STOP instruction puts the MCU in a low powerconsumption mode for standby situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is described in the following subsections. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur.
9.7.1 Wait Mode In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 9-15 shows the timing for wait mode entry. A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. Wait mode also can be exited by a reset or break. A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM break status register (SBSR). If the COP disable bit, COPD, in the mask option register is logic 0, then the computer operating properly module (COP) is enabled and remains active in wait mode.
IAB WAIT ADDR WAIT ADDR + 1 SAME SAME
IDB
PREVIOUS DATA
NEXT OPCODE
SAME
SAME
R/W
NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction.
Figure 9-15. Wait Mode Entry Timing Figure 9-16 and Figure 9-17 show the timing for WAIT recovery.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor System Integration Module (SIM)
Data Sheet 159
System Integration Module (SIM)
IAB
$6E0B
$6E0C
$00FF
$00FE
$00FD
$00FC
IDB
$A6
$A6
$A6
$01
$0B
$6E
EXITSTOPWAIT
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt
Figure 9-16. Wait Recovery from Interrupt or Break
32 CYCLES IAB $6E0B
32 CYCLES RST VCT H RST VCT L
IDB
$A6
$A6
$A6
RST
ICLK
Figure 9-17. Wait Recovery from Internal Reset
9.7.2 Stop Mode In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery time has elapsed. Reset or break also causes an exit from stop mode. The SIM disables the clock generator module output (CGMOUT) in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in the configuration register 1 (CONFIG1). If SSREC is set, stop recovery is reduced from the normal delay of 4096 ICLK cycles down to 32. This is ideal for applications using canned oscillators that do not require long start-up times from stop mode.
NOTE:
External crystal applications should use the full stop recovery time by clearing the SSREC bit.
Data Sheet 160
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) SIM Registers
A break interrupt during stop mode sets the SIM break stop/wait bit (SBSW) in the SIM break status register (SBSR). The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop recovery. It is then used to time the recovery period. Figure 9-18 shows stop mode entry timing.
NOTE:
To minimize stop current, all pins configured as inputs should be driven to a logic 1 or logic 0.
CPUSTOP
IAB
STOP ADDR
STOP ADDR + 1
SAME
SAME
IDB
PREVIOUS DATA
NEXT OPCODE
SAME
SAME
R/W
NOTE: Previous data can be operand data or the STOP opcode, depending on the last instruction.
Figure 9-18. Stop Mode Entry Timing
STOP RECOVERY PERIOD ICLK
INT/BREAK
IAB
STOP +1
STOP + 2
STOP + 2
SP
SP - 1
SP - 2
SP - 3
Figure 9-19. Stop Mode Recovery from Interrupt or Break
9.8 SIM Registers
The SIM has three memory-mapped registers: * * * SIM Break Status Register (SBSR) -- $FE00 SIM Reset Status Register (SRSR) -- $FE01 SIM Break Flag Control Register (SBFCR) -- $FE03
Data Sheet 161
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor System Integration Module (SIM)
System Integration Module (SIM)
9.8.1 SIM Break Status Register The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from stop mode or wait mode.
Address: $FE00 Bit 7 Read: R Write: Reset:
Note: Writing a logic 0 clears SBSW.
6 R
5 R
4 R
3 R
2 R
1 SBSW
Bit 0 R
Note 0 R = Reserved
Figure 9-20. SIM Break Status Register (SBSR) SBSW -- Break Wait Bit This status bit is set when a break interrupt causes an exit from wait mode or stop mode. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Stop mode or wait mode was exited by break interrupt 0 = Stop mode or wait mode was not exited by break interrupt SBSW can be read within the break interrupt routine. The user can modify the return address on the stack by subtracting 1 from it. The following code is an example.
This code works if the H register has been pushed onto the stack in the break service routine software. This code should be executed at the end of the break service routine software. HIBYTE LOBYTE EQU EQU If not SBSW, do RTI BRCLR TST BNE DEC DOLO RETURN DEC PULH RTI SBSW,SBSR, RETURN LOBYTE,SP DOLO HIBYTE,SP LOBYTE,SP ; See if wait mode or stop mode was exited by ; break. ;If RETURNLO is not zero, ;then just decrement low byte. ;Else deal with high byte, too. ;Point to WAIT/STOP opcode. ;Restore H register.
Data Sheet 162
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor
System Integration Module (SIM) SIM Registers
9.8.2 SIM Reset Status Register This register contains six flags that show the source of the last reset provided all previous reset status bits have been cleared. Clear the SIM reset status register by reading it. A power-on reset sets the POR bit and clears all other bits in the register.
Address: $FE01 Bit 7 Read: Write: Reset: 1 0 0 0 0 0 0 0 POR 6 PIN 5 COP 4 ILOP 3 ILAD 2 0 1 LVI Bit 0 0
= Unimplemented
Figure 9-21. SIM Reset Status Register (SRSR) POR -- Power-On Reset Bit 1 = Last reset caused by POR circuit 0 = Read of SRSR PIN -- External Reset Bit 1 = Last reset caused by external reset pin (RST) 0 = POR or read of SRSR COP -- Computer Operating Properly Reset Bit 1 = Last reset caused by COP counter 0 = POR or read of SRSR ILOP -- Illegal Opcode Reset Bit 1 = Last reset caused by an illegal opcode 0 = POR or read of SRSR ILAD -- Illegal Address Reset Bit (opcode fetches only) 1 = Last reset caused by an opcode fetch from an illegal address 0 = POR or read of SRSR LVI -- Low-Voltage Inhibit Reset Bit 1 = Last reset caused by the LVI circuit 0 = POR or read of SRSR
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor System Integration Module (SIM)
Data Sheet 163
System Integration Module (SIM)
9.8.3 SIM Break Flag Control Register The SIM break control register contains a bit that enables software to clear status bits while the MCU is in a break state.
Address: $FE03 Bit 7 Read: BCFE Write: Reset: 0 R = Reserved R R R R R R R 6 5 4 3 2 1 Bit 0
Figure 9-22. SIM Break Flag Control Register (SBFCR) BCFE -- Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break
Data Sheet 164
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 System Integration Module (SIM) Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 10. Monitor ROM (MON)
10.1 Contents
10.2 10.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 10.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 10.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 10.4.3 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 10.4.4 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 10.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 10.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
10.2 Introduction
This section describes the monitor ROM (MON) and the monitor mode entry methods. The monitor ROM allows complete testing of the MCU through a single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher test voltage, VTST, as long as vector addresses $FFFE and $FFFF are blank, thus reducing the hardware requirements for in-circuit programming.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Monitor ROM (MON)
Data Sheet 165
Monitor ROM (MON) 10.3 Features
Features of the monitor ROM include: * * * * * * * * * * Normal user-mode pin functionality One pin dedicated to serial communication between monitor ROM and host computer Standard mark/space non-return-to-zero (NRZ) communication with host computer Execution of code in RAM or FLASH FLASH memory security feature1 FLASH memory programming interface Enhanced PLL (phase-locked loop) option to allow use of external 32.768-kHz crystal to generate internal frequency of 2.4576 MHz 368 bytes monitor ROM code size ($FE10 to $FF7F) Monitor mode entry without high voltage, VTST, if reset vector is blank ($FFFE and $FFFF contain $FF) Standard monitor mode entry if high voltage, VTST, is applied to IRQ1
10.4 Functional Description
The monitor ROM receives and executes commands from a host computer. Figure 10-1 shows an example circuit used to enter monitor mode and communicate with a host computer via a standard RS-232 interface. Simple monitor commands can access any memory address. In monitor mode, the MCU can execute code downloaded into RAM by a host computer while most MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through the PTA0 pin. A level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used in a wired-OR configuration and requires a pullup resistor.
1. No security feature is absolutely secure. However, Freescale's strategy is to make reading or copying the FLASH difficult for unauthorized users.
Data Sheet 166
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Monitor ROM (MON) Freescale Semiconductor
Monitor ROM (MON) Functional Description
68HC908SR12 RST 0.1 F VTST (SEE NOTE 3) 10 k C D CGMXFC 4.9152MHz/9.8304MHz 10 k SW2 (SEE NOTES 2 AND 3) IRQ1 $FFFF
RESET VECTORS $FFFE
0.033 F
C 1 10 F + 3 4 10 F + MC145407 20 + 18 32.768 kHz XTAL 17 + 2 19 VDD 5 6 16 10 F VDD 330 k 6-30 pF D 10 F 6-30 pF 10 M D C SW4 (SEE NOTE 2) SW3 (SEE NOTE 2)
0.01 F
OSC1 OSC2 VSS VSSA VSSAM VREFL VDD VDDA VREFH VDD PTA0 PTC1 VDD PTA1 PTA2
DB-25 2 3 7
15 0.1 F VDD 1 2 6 4 MC74HC125 14 3 5 VDD
10 k
7 A (SEE NOTE 1) SW1 B
Notes: 1. For monitor mode entry when SW2 at position C (IRQ1 = VTST): SW1: Position A -- Bus clock = CGMXCLK / 4 SW1: Position B -- Bus clock = CGMXCLK / 2 2. SW2, SW3, and SW4: Position C -- Enter monitor mode using off-chip oscillator only. SW2, SW3, and SW4: Position D -- Enter monitor mode using 32.768kHz XTAL and internal PLL. 3. See Table 24-5 for IRQ1 voltage level requirements. 4. See Table 10-1 for other monitor mode entry configurations.
Figure 10-1. Monitor Mode Circuit
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Monitor ROM (MON) Data Sheet 167
Monitor ROM (MON)
The monitor code allows enabling the PLL to generate the internal clock, provided the reset vector is blank ($FF), when the device is being clocked by a low-frequency crystal. This entry method, which is enabled when IRQ1 is held low out of reset, is intended to support serial communication/programming at 9600 baud in monitor mode by stepping up the external frequency (assumed to be 32.768 kHz) by a fixed amount to generate the desired internal frequency (2.4576 MHz). If the reset vector is not blank (not $FF), the frequency stepping feature is not supported, because IRQ1 cannot be held low for monitor mode entry. With a non-blank reset vector, entry into monitor mode requires VTST on IRQ1.
10.4.1 Entering Monitor Mode Table 10-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode may be entered after a POR and will allow communication at 9600 baud provided one of the following sets of conditions is met: 1. If $FFFE and $FFFF do not contain $FF (programmed state): - The external clock is 4.9152 MHz with PTC1 low or 9.8304 MHz with PTC1 high - IRQ1 = VTST (PLL off) 2. If $FFFE and $FFFF both contain $FF (erased state): - The external clock is 9.8304 MHz - IRQ1 = VDD (this can be implemented through the internal IRQ1 pullup; PLL off) 3. If $FFFE and $FFFF both contain $FF (erased state): - The external clock is 32.768 kHz (crystal) - IRQ1 = VSS (this setting initiates the PLL to boost the external 32.768 kHz to an internal bus frequency of 2.4576 MHz)
Data Sheet 168
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Monitor ROM (MON) Freescale Semiconductor
Freescale Semiconductor Monitor ROM (MON) 169
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Data Sheet
Table 10-1. Monitor Mode Signal Requirements and Options
IRQ1 X RST GND Address $FFFE/ $FFFF X PTA2 X PTA1 X PTA0(1) X PTC1 X External Clock X Bus Frequency 0 PLL X COP Disabled Baud Rate 0 Comment No operation until reset goes high PTA1 and PTA2 voltages only required if IRQ1 = VTST; PTC1 determines frequency divider PTA1 and PTA2 voltages only required if IRQ1 = VTST; PTC1 determines frequency divider External frequency always divided by 4 PLL enabled (BCS set) in monitor code Enters user mode -- will encounter an illegal address reset Enters user mode
VTST
VDD or VTST
X
0
1
1
0
4.9152 MHz(2)
2.4576 MHz
OFF
Disabled
9600
VTST
VDD or VTST
X
0
1
1
1
9.8304 MHz(2)
2.4576 MHz
OFF
Disabled
9600
VDD
VDD
Blank "$FFFF" Blank "$FFFF"
X
X
1
X
9.8304 MHz(3)
2.4576 MHz 2.4576 MHz
OFF
Disabled
9600
GND
VDD
X
X
1
X
32.768 kHz(3)
ON
Disabled
9600
VDD or GND VDD or GND
VTST
Blank "$FFFF"
X
X
X
X
X
--
OFF
Enabled
--
VDD or VTST
Not Blank
X
X
X
X
X
--
OFF
Enabled
--
Monitor ROM (MON) Functional Description
Notes: 1. PTA0 = 1 if serial communication; PTA0 = 0 if parallel communication (factory use only) 2. When IRQ1 = VTST, external clock must be derived by a 4.9152MHz or 9.8304MHz off-chip oscillator. 3. External clock is derived by a crystal or an off-chip oscillator.
Monitor ROM (MON)
If VTST is applied to IRQ1 and PTC1 is low upon monitor mode entry (above condition set 1), the bus frequency is a divide-by-two of the input clock. If PTC1 is high with VTST applied to IRQ1 upon monitor mode entry, the bus frequency will be a divide-by-four of the input clock. Holding the PTC1 pin low when entering monitor mode causes a bypass of a divide-by-two stage at the oscillator only if VTST is applied to IRQ1. In this event, the CGMOUT frequency is equal to the CGMXCLK frequency, and the OSC1 input directly generates internal bus clocks. In this case, the OSC1 signal must have a 50% duty cycle at maximum bus frequency. If entering monitor mode without high voltage on IRQ1 (above condition set 2 or 3, where applied voltage is either VDD or VSS), then all port A pin requirements and conditions, including the PTC1 frequency divisor selection, are not in effect. This is to reduce circuit requirements when performing in-circuit programming.
NOTE:
If the reset vector is blank and monitor mode is entered, the chip will see an additional reset cycle after the initial POR reset. Once the part has been programmed, the traditional method of applying a voltage, VTST, to IRQ1 must be used to enter monitor mode. The COP module is disabled in monitor mode based on these conditions: * If monitor mode was entered as a result of the reset vector being blank (above condition set 2 or 3), the COP is always disabled regardless of the state of IRQ1 or RST. If monitor mode was entered with VTST on IRQ1 (condition set 1), then the COP is disabled as long as VTST is applied to either IRQ1 or RST.
*
The second condition states that as long as VTST is maintained on the IRQ1 pin after entering monitor mode, or if VTST is applied to RST after the initial reset to get into monitor mode (when VTST was applied to IRQ1), then the COP will be disabled. In the latter situation, after VTST is applied to the RST pin, VTST can be removed from the IRQ1 pin in the interest of freeing the IRQ1 for normal functionality in monitor mode.
Data Sheet 170
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Monitor ROM (MON) Freescale Semiconductor
Monitor ROM (MON) Functional Description
Figure 10-2 shows a simplified diagram of the monitor mode entry when the reset vector is blank and just 1 x VDD voltage is applied to the IRQ1 pin. An external oscillator of 9.8304 MHz is required for a baud rate of 9600, as the internal bus frequency is automatically set to the external frequency divided by four.
POR RESET
IS VECTOR BLANK? YES MONITOR MODE
NO
NORMAL USER MODE
EXECUTE MONITOR CODE
POR TRIGGERED? YES
NO
Figure 10-2. Low-Voltage Monitor Mode Entry Flowchart Enter monitor mode with pin configuration shown in Figure 10-1 by pulling RST low and then high. The rising edge of RST latches monitor mode. Once monitor mode is latched, the values on the specified pins can change. Once out of reset, the MCU waits for the host to send eight security bytes. (See 10.5 Security.) After the security bytes, the MCU sends a break signal (10 consecutive logic 0s) to the host, indicating that it is ready to receive a command. In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt), and break interrupt than those for user mode. The alternate vectors are in the $FE page instead of the $FF page and allow code execution from the internal monitor firmware instead of user code.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Monitor ROM (MON)
Data Sheet 171
Monitor ROM (MON)
NOTE:
Exiting monitor mode after it has been initiated by having a blank reset vector requires a power-on reset (POR). Pulling RST low will not exit monitor mode in this situation. Table 10-2 summarizes the differences between user mode and monitor mode. Table 10-2. Mode Differences
Functions Modes Reset Vector High $FFFE $FEFE Reset Vector Low $FFFF $FEFF Break Vector High $FFFC $FEFC Break Vector Low $FFFD $FEFD SWI Vector High $FFFC $FEFC SWI Vector Low $FFFD $FEFD
User Monitor
10.4.2 Data Format Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. Transmit and receive baud rates must be identical.
START BIT NEXT START STOP BIT BIT
BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
BIT 6
BIT 7
Figure 10-3. Monitor Data Format 10.4.3 Break Signal A start bit (logic 0) followed by nine logic 0 bits is a break signal. When the monitor receives a break signal, it drives the PTA0 pin high for the duration of two bits and then echoes back the break signal.
MISSING STOP BIT 2-STOP BIT DELAY BEFORE ZERO ECHO
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 10-4. Break Transaction
Data Sheet 172 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Monitor ROM (MON) Freescale Semiconductor
Monitor ROM (MON) Functional Description
10.4.4 Baud Rate The communication baud rate is controlled by the crystal frequency and the state of the PTC1 pin (when IRQ1 is set to VTST) upon entry into monitor mode. When PTC1 is high, the divide by ratio is 1024. If the PTC1 pin is at logic 0 upon entry into monitor mode, the divide by ratio is 512. If monitor mode was entered with VDD on IRQ1, then the divide by ratio is set at 1024, regardless of PTC1. If monitor mode was entered with VSS on IRQ, then the internal PLL steps up the external frequency, presumed to be 32.768 kHz, to 2.4576 MHz. These latter two conditions for monitor mode entry require that the reset vector is blank. Table 10-3 lists external frequencies required to achieve a standard baud rate of 9600 BPS. Other standard baud rates can be accomplished using proportionally higher or lower frequency generators. If using a crystal as the clock source, be aware of the upper frequency limit that the internal clock module can handle. See 24.6 5.0V DC Electrical Characteristics and 24.8 5.0V Control Timing for this limit. Table 10-3. Monitor Baud Rate Selection
External Frequency 4.9152 MHz 9.8304 MHz 9.8304 MHz 32.768 kHz IRQ1 VTST VTST VDD VSS PTC1 0 1 X X Internal Frequency 2.4576 MHz 2.4576 MHz 2.4576 MHz 2.4576 MHz Baud Rate (BPS) 9600 9600 9600 9600
10.4.5 Commands The monitor ROM firmware uses these commands: * * * READ (read memory) WRITE (write memory) IREAD (indexed read)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Monitor ROM (MON)
Data Sheet 173
Monitor ROM (MON)
* * * IWRITE (indexed write) READSP (read stack pointer) RUN (run user program)
The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. An 11-bit delay at the end of each command allows the host to send a break character to cancel the command. A delay of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned. The data returned by a read command appears after the echo of the last byte of the command.
NOTE:
Wait one bit time after each echo before sending the next byte.
FROM HOST
READ
READ
ADDRESS HIGH
ADDRESS HIGH
ADDRESS LOW
ADDRESS LOW
DATA
4 ECHO
1
4
1
4
1
3, 2
4 RETURN
Notes: 1 = Echo delay, 2 bit times 2 = Data return delay, 2 bit times 3 = Cancel command delay, 11 bit times 4 = Wait 1 bit time before sending next byte.
Figure 10-5. Read Transaction
FROM HOST
WRITE 3 ECHO 1
WRITE 3
ADDRESS HIGH
ADDRESS HIGH
ADDRESS LOW
ADDRESS LOW
DATA
DATA
1
3
1
3
1
2, 3
Notes: 1 = Echo delay, 2 bit times 2 = Cancel command delay, 11 bit times 3 = Wait 1 bit time before sending next byte.
Figure 10-6. Write Transaction
Data Sheet 174
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Monitor ROM (MON) Freescale Semiconductor
Monitor ROM (MON) Functional Description
A brief description of each monitor mode command is given in Table 10-4 through Table 10-9. Table 10-4. READ (Read Memory) Command
Description Operand Data Returned Opcode Read byte from memory 2-byte address in high-byte:low-byte order Returns contents of specified address $4A Command Sequence
SENT TO MONITOR
READ
READ
ADDRESS HIGH
ADDRESS HIGH
ADDRESS LOW
ADDRESS LOW
DATA
ECHO
RETURN
Table 10-5. WRITE (Write Memory) Command
Description Operand Data Returned Opcode Write byte to memory 2-byte address in high-byte:low-byte order; low byte followed by data byte None $49 Command Sequence
FROM HOST
WRITE
WRITE
ADDRESS HIGH
ADDRESS HIGH
ADDRESS LOW
ADDRESS LOW
DATA
DATA
ECHO
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Monitor ROM (MON)
Data Sheet 175
Monitor ROM (MON)
Table 10-6. IREAD (Indexed Read) Command
Description Operand Data Returned Opcode Read next 2 bytes in memory from last address accessed 2-byte address in high byte:low byte order Returns contents of next two addresses $1A Command Sequence
FROM HOST
IREAD
IREAD
DATA
DATA
ECHO
RETURN
Table 10-7. IWRITE (Indexed Write) Command
Description Operand Data Returned Opcode Write to last address accessed + 1 Single data byte None $19 Command Sequence
FROM HOST
IWRITE
IWRITE
DATA
DATA
ECHO
Data Sheet 176
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Monitor ROM (MON) Freescale Semiconductor
Monitor ROM (MON) Functional Description
A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full 64k-byte memory map. Table 10-8. READSP (Read Stack Pointer) Command
Description Operand Data Returned Opcode Reads stack pointer None Returns incremented stack pointer value (SP + 1) in high-byte:lowbyte order $0C Command Sequence
FROM HOST
READSP
READSP
SP HIGH
SP LOW
ECHO
RETURN
Table 10-9. RUN (Run User Program) Command
Description Operand Data Returned Opcode Executes PULH and RTI instructions None None $28 Command Sequence
FROM HOST
RUN
RUN
ECHO
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Monitor ROM (MON)
Data Sheet 177
Monitor ROM (MON)
The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can modify the stacked CPU registers to prepare to run the host program. The READSP command returns the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at addresses SP + 5 and SP + 6.
SP HIGH BYTE OF INDEX REGISTER CONDITION CODE REGISTER ACCUMULATOR LOW BYTE OF INDEX REGISTER SP + 1 SP + 2 SP + 3 SP + 4
HIGH BYTE OF PROGRAM COUNTER SP + 5 LOW BYTE OF PROGRAM COUNTER SP + 6 SP + 7
Figure 10-7. Stack Pointer at Monitor Mode Entry
10.5 Security
A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host can bypass the security feature at monitor mode entry by sending eight security bytes that match the bytes at locations $FFF6-$FFFD. Locations $FFF6-$FFFD contain userdefined data.
NOTE:
Do not leave locations $FFF6-$FFFD blank. For security reasons, program locations $FFF6-$FFFD even if they are not used for vectors. During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security bytes on pin PTA0. If the received bytes match those at locations $FFF6-$FFFD, the host bypasses the security feature and can read all FLASH locations and execute code from FLASH. Security remains bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed and security code entry is not required. (See Figure 10-8.)
Data Sheet 178
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Monitor ROM (MON) Freescale Semiconductor
Monitor ROM (MON) Security
VDD 4096 + 32 ICLK CYCLES RST COMMAND 2 BYTE 8 ECHO 4 1 COMMAND ECHO BREAK 256 BUS CYCLES (MINIMUM) BYTE 1 BYTE 2 BYTE 8 1 BYTE 2 ECHO 1
FROM HOST
PTA0 1 BYTE 1 ECHO FROM MCU 4
NOTES: 1 = Echo delay, 2 bit times. 2 = Data return delay, 2 bit times. 4 = Wait 1 bit time before sending next byte.
Figure 10-8. Monitor Mode Entry Timing Upon power-on reset, if the received bytes of the security code do not match the data at locations $FFF6-$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break character, signifying that it is ready to receive a command.
NOTE:
The MCU does not transmit a break character until after the host sends the eight security bits. To determine whether the security code entered is correct, check to see if bit 6 of RAM address $40 is set. If it is, then the correct security code has been entered and FLASH can be accessed. If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation clears the security code locations so that all eight security bytes become $FF (blank).
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Monitor ROM (MON)
Data Sheet 179
Monitor ROM (MON)
Data Sheet 180
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Monitor ROM (MON) Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 11. Timer Interface Module (TIM)
11.1 Contents
11.2 11.3 11.4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183 11.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 11.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 188 11.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .189 11.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 189 11.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 190 11.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 191 11.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 11.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
11.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 11.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194 11.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194 11.8 11.9 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 194 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 11.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 196 11.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 11.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 199 11.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 200 11.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM)
Data Sheet 181
Timer Interface Module (TIM) 11.2 Introduction
This section describes the timer interface (TIM) module. The TIM is a two-channel timer that provides a timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 11-1 is a block diagram of the TIM. This particular MCU has two timer interface modules which are denoted as TIM1 and TIM2.
11.3 Features
Features of the TIM include: * Two input capture/output compare channels: - Rising-edge, falling-edge, or any-edge input capture trigger - Set, clear, or toggle output compare action * * * * * Buffered and unbuffered pulse-width-modulation (PWM) signal generation Programmable TIM clock input with 7-frequency internal bus clock prescaler selection Free-running or modulo up-count operation Toggle any channel pin on overflow TIM counter stop and reset bits
Data Sheet 182
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) Pin Name Conventions
11.4 Pin Name Conventions
The text that follows describes both timers, TIM1 and TIM2. The TIM input/output (I/O) pin names are T[1,2]CH0 (timer channel 0) and T[1,2]CH1 (timer channel 1), where "1" is used to indicate TIM1 and "2" is used to indicate TIM2. The two TIMs share four I/O pins with four I/O port pins. The full names of the TIM I/O pins are listed in Table 11-1. The generic pin names appear in the text that follows. Table 11-1. Pin Name Conventions
TIM Generic Pin Names: Full TIM Pin Names: TIM1 TIM2 T[1,2]CH0 PTA6/T1CH0 PTB4/T2CH0 T[1,2]CH1 PTA7/T1CH1 PTB5/T2CH1
NOTE:
References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TCH0 may refer generically to T1CH0 and T2CH0, and TCH1 may refer to T1CH1 and T2CH1.
11.5 Functional Description
Figure 11-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing reference for the input capture and output compare functions. The TIM counter modulo registers, TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value at any time without affecting the counting sequence. The two TIM channels (per timer) are programmable independently as input capture or output compare channels.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM)
Data Sheet 183
Timer Interface Module (TIM)
PRESCALER SELECT INTERNAL BUS CLOCK TSTOP TRST 16-BIT COUNTER 16-BIT COMPARATOR TMODH:TMODL TOV0 CHANNEL 0 16-BIT COMPARATOR TCH0H:TCH0L 16-BIT LATCH MS0A MS0B TOV1 INTERNAL BUS CHANNEL 1 16-BIT COMPARATOR TCH1H:TCH1L 16-BIT LATCH MS1A CH1IE CH1F INTERRUPT LOGIC ELS1B ELS1A CH1MAX PORT LOGIC T[1,2]CH1 CH0IE CH0F INTERRUPT LOGIC ELS0B ELS0A CH0MAX PORT LOGIC T[1,2]CH0 PRESCALER
PS2
PS1
PS0
TOF TOIE
INTERRUPT LOGIC
Figure 11-1. TIM Block Diagram Figure 11-2 summarizes the timer registers.
NOTE:
References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TSC may generically refer to both T1SC and T2SC.
Data Sheet 184
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) Functional Description
Addr.
Register Name
Bit 7 TOF
6 TOIE
5 TSTOP
4 0 TRST
3 0
2 PS2
1 PS1 0 9
Bit 0 PS0 0 Bit 8
Read: Timer 1 Status and Control $0020 Write: Register (T1SC) Reset: Read: Timer 1 Counter Register $0021 Write: High (T1CNTH) Reset: Read: Timer 1 Counter Register $0022 Write: Low (T1CNTL) Reset: Read: Timer 1 Counter Modulo $0023 Write: Register High (T1MODH) Reset: Read: Timer 1 Counter Modulo Write: Register Low (T1MODL) Reset:
0 0 Bit 15 0 14 1 13
0 12
0 11
0 10
0 Bit 7
0 6
0 5
0 4
0 3
0 2
0 1
0 Bit 0
0 Bit 15 1 Bit 7 1 CH0F
0 14 1 6 1 CH0IE
0 13 1 5 1 MS0B 0 13
0 12 1 4 1 MS0A 0 12
0 11 1 3 1 ELS0B 0 11
0 10 1 2 1 ELS0A 0 10
0 9 1 1 1 TOV0 0 9
0 Bit 8 1 Bit 0 1 CH0MAX 0 Bit 8
$0024
Read: Timer 1 Channel 0 Status $0025 and Control Register Write: (T1SC0) Reset: Read: Timer 1 Channel 0 Write: Register High (T1CH0H) Reset: Read: Timer 1 Channel 0 Write: Register Low (T1CH0L) Reset:
0 0 Bit 15 0 14
$0026
Indeterminate after reset Bit 7 6 5 4 3 2 1 Bit 0
$0027
Indeterminate after reset CH1F CH1IE 0 0 0 0 0 0 0 0 0 0 MS1A ELS1B ELS1A TOV1 CH1MAX
Read: Timer 1 Channel 1 Status $0028 and Control Register Write: (T1SC1) Reset:
= Unimplemented
Figure 11-2. TIM I/O Register Summary (Sheet 1 of 3)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM)
Data Sheet 185
Timer Interface Module (TIM)
Addr.
Register Name Read: Timer 1 Channel 1 Write: Register High (T1CH1H) Reset: Read: Timer 1 Channel 1 Write: Register Low (T1CH1L) Reset: Read: Timer 2 Status and Control Write: Register (T2SC) Reset: Read: Timer 2 Counter Register Write: High (T2CNTH) Reset: Read: Timer 2 Counter Register Write: Low (T2CNTL) Reset: Read: Timer 2 Counter Modulo Write: Register High (T2MODH) Reset: Read: Timer 2 Counter Modulo Write: Register Low (T2MODL) Reset:
Bit 7 Bit 15
6 14
5 13
4 12
3 11
2 10
1 9
Bit 0 Bit 8
$0029
Indeterminate after reset Bit 7 6 5 4 3 2 1 Bit 0
$002A
Indeterminate after reset TOF TOIE 0 0 Bit 15 0 14 1 13 TSTOP TRST 0 12 0 11 0 10 0 9 0 Bit 8 0 0 PS2 PS1 PS0
$002B
$002C
0 Bit 7
0 6
0 5
0 4
0 3
0 2
0 1
0 Bit 0
$002D
0 Bit 15 1 Bit 7 1 CH0F
0 14 1 6 1 CH0IE
0 13 1 5 1 MS0B 0 13
0 12 1 4 1 MS0A 0 12
0 11 1 3 1 ELS0B 0 11
0 10 1 2 1 ELS0A 0 10
0 9 1 1 1 TOV0 0 9
0 Bit 8 1 Bit 0 1 CH0MAX 0 Bit 8
$002E
$002F
Read: Timer 2 Channel 0 Status $0030 and Control Register Write: (T2SC0) Reset: Read: $0031 Timer 2 Channel 0 Write: Register High (T2CH0H) Reset:
0 0 Bit 15 0 14
Indeterminate after reset = Unimplemented
Figure 11-2. TIM I/O Register Summary (Sheet 2 of 3)
Data Sheet 186
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) Functional Description
Addr.
Register Name Read: Timer 2 Channel 0 Write: Register Low (T2CH0L) Reset:
Bit 7 Bit 7
6 6
5 5
4 4
3 3
2 2
1 1
Bit 0 Bit 0
$0032
Indeterminate after reset CH1F CH1IE 0 0 Bit 15 0 14 0 13 0 12 0 11 0 10 0 9 0 Bit 8 0 MS1A ELS1B ELS1A TOV1 CH1MAX
Read: Timer 2 Channel 1 Status $0033 and Control Register Write: (T2SC1) Reset: Read: $0034 Timer 2 Channel 1 Write: Register High (T2CH1H) Reset: Read: $0035 Timer 2 Channel 1 Write: Register Low (T2CH1L) Reset:
Indeterminate after reset Bit 7 6 5 4 3 2 1 Bit 0
Indeterminate after reset = Unimplemented
Figure 11-2. TIM I/O Register Summary (Sheet 3 of 3) 11.5.1 TIM Counter Prescaler The TIM clock source can be one of the seven prescaler outputs. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register select the TIM clock source.
11.5.2 Input Capture With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures can generate TIM CPU interrupt requests.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM)
Data Sheet 187
Timer Interface Module (TIM)
11.5.3 Output Compare With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests. 11.5.3.1 Unbuffered Output Compare Any output compare channel can generate unbuffered output compare pulses as described in 11.5.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written. Use the following methods to synchronize unbuffered changes in the output compare value on channel x: * When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. When changing to a larger output compare value, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period.
*
Data Sheet 188
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) Functional Description
11.5.3.2 Buffered Output Compare Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin.
NOTE:
In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares.
11.5.4 Pulse Width Modulation (PWM) By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal. As Figure 11-3 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the TIM to set the pin if the state of the PWM pulse is logic 0.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM)
Data Sheet 189
Timer Interface Module (TIM)
The value in the TIM counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing $00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is $000. See 11.10.1 TIM Status and Control Register.
OVERFLOW OVERFLOW OVERFLOW
PERIOD
PULSE WIDTH TCHx
OUTPUT COMPARE
OUTPUT COMPARE
OUTPUT COMPARE
Figure 11-3. PWM Period and Pulse Width The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers produces a duty cycle of 128/256 or 50%. 11.5.4.1 Unbuffered PWM Signal Generation Any output compare channel can generate unbuffered PWM pulses as described in 11.5.4 Pulse Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written.
Data Sheet 190 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) Functional Description
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x: * When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value. When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period.
*
NOTE:
In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value.
11.5.4.2 Buffered PWM Signal Generation Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the pulse width of the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM)
Data Sheet 191
Timer Interface Module (TIM)
NOTE:
In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered PWM signals.
11.5.4.3 PWM Initialization To ensure correct operation when generating unbuffered or buffered PWM signals, use the following initialization procedure: 1. In the TIM status and control register (TSC): a. Stop the TIM counter by setting the TIM stop bit, TSTOP. b. Reset the TIM counter and prescaler by setting the TIM reset bit, TRST. 2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM period. 3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width. 4. In TIM channel x status and control register (TSCx): a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare or PWM signals) to the mode select bits, MSxB:MSxA. (See Table 11-3.) b. Write 1 to the toggle-on-overflow bit, TOVx. c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must force the output to the complement of the pulse width level. (See Table 11-3.)
NOTE:
In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare can also cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP.
Data Sheet 192
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) Interrupts
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control register 0 (TSCR0) controls and monitors the PWM signal from the linked channels. Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle output. Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty cycle output. (See 11.10.4 TIM Channel Status and Control Registers.)
11.6 Interrupts
The following TIM sources can generate interrupt requests: * TIM overflow flag (TOF) -- The TOF bit is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE, enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control register. TIM channel flags (CH1F:CH0F) -- The CHxF bit is set when an input capture or output compare occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE = 1. CHxF and CHxIE are in the TIM channel x status and control register.
*
11.7 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM)
Data Sheet 193
Timer Interface Module (TIM)
11.7.1 Wait Mode The TIM remains active after the execution of a WAIT instruction. In wait mode, the TIM registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode. If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction.
11.7.2 Stop Mode The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt.
11.8 TIM During Break Interrupts
A break interrupt stops the TIM counter. The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. (See 9.8.3 SIM Break Flag Control Register.) To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit.
Data Sheet 194
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) I/O Signals
11.9 I/O Signals
Port A and port B each shares two of its pins with the TIM. The four TIM channel I/O pins are T1CH0, T1CH1, T2CH0, and T2CH1 as described in 11.4 Pin Name Conventions. Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. T1CH0 and T2CH0 can be configured as buffered output compare or buffered PWM pins.
11.10 I/O Registers
NOTE:
References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TSC may generically refer to both T1SC AND T2SC. These I/O registers control and monitor operation of the TIM: * * * * * TIM status and control register (TSC) TIM counter registers (TCNTH:TCNTL) TIM counter modulo registers (TMODH:TMODL) TIM channel status and control registers (TSC0, TSC1) TIM channel registers (TCH0H:TCH0L, TCH1H:TCH1L)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM)
Data Sheet 195
Timer Interface Module (TIM)
11.10.1 TIM Status and Control Register The TIM status and control register (TSC): * * * * * Enables TIM overflow interrupts Flags TIM overflows Stops the TIM counter Resets the TIM counter Prescales the TIM counter clock
Address: T1SC, $0020 and T2SC, $002B Bit 7 Read: Write: Reset: TOF TOIE 0 0 0 1 TSTOP TRST 0 0 0 0 0 6 5 4 0 3 0 PS2 PS1 PS0 2 1 Bit 0
= Unimplemented
Figure 11-4. TIM Status and Control Register (TSC) TOF -- TIM Overflow Flag Bit This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set and then writing a logic 0 to TOF. If another TIM overflow occurs before the clearing sequence is complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect. 1 = TIM counter has reached modulo value 0 = TIM counter has not reached modulo value TOIE -- TIM Overflow Interrupt Enable Bit This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit. 1 = TIM overflow interrupts enabled 0 = TIM overflow interrupts disabled
Data Sheet 196 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) I/O Registers
TSTOP -- TIM Stop Bit This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit. 1 = TIM counter stopped 0 = TIM counter active
NOTE:
Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode. TRST -- TIM Reset Bit Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM counter is reset and always reads as logic 0. Reset clears the TRST bit. 1 = Prescaler and TIM counter cleared 0 = No effect
NOTE:
Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value of $0000. PS[2:0] -- Prescaler Select Bits These read/write bits select one of the seven prescaler outputs as the input to the TIM counter as Table 11-2 shows. Reset clears the PS[2:0] bits. Table 11-2. Prescaler Selection
PS2 0 0 0 0 1 1 1 1 PS1 0 0 1 1 0 0 1 1 PS0 0 1 0 1 0 1 0 1 TIM Clock Source Internal bus clock / 1 Internal bus clock / 2 Internal bus clock / 4 Internal bus clock / 8 Internal bus clock / 16 Internal bus clock / 32 Internal bus clock / 64 Not available
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM)
Data Sheet 197
Timer Interface Module (TIM)
11.10.2 TIM Counter Registers The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers.
NOTE:
If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL retains the value latched during the break.
Address: T1CNTH, $0021 and T2CNTH, $002C Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 Bit 15 6 14 5 13 4 12 3 11 2 10 1 9 Bit 0 Bit 8
= Unimplemented
Figure 11-5. TIM Counter Registers High (TCNTH)
Address: T1CNTL, $0022 and T2CNTL, $002D Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 Bit 7 6 6 5 5 4 4 3 3 2 2 1 1 Bit 0 Bit 0
= Unimplemented
Figure 11-6. TIM Counter Registers Low (TCNTL)
Data Sheet 198
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) I/O Registers
11.10.3 TIM Counter Modulo Registers The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting from $0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.
Address: T1MODH, $0023 and T2MODH, $002E Bit 7 Read: Bit 15 Write: Reset: 1 1 1 1 1 1 1 1 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0
Figure 11-7. TIM Counter Modulo Register High (TMODH)
Address: T1MODL, $0024 and T2MODL, $002F Bit 7 Read: Bit 7 Write: Reset: 1 1 1 1 1 1 1 1 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0
Figure 11-8. TIM Counter Modulo Register Low (TMODL)
NOTE:
Reset the TIM counter before writing to the TIM counter modulo registers.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM)
Data Sheet 199
Timer Interface Module (TIM)
11.10.4 TIM Channel Status and Control Registers Each of the TIM channel status and control registers: * * * * * * * * Flags input captures and output compares Enables input capture and output compare interrupts Selects input capture, output compare, or PWM operation Selects high, low, or toggling output on output compare Selects rising edge, falling edge, or any edge as the active input capture trigger Selects output toggling on TIM overflow Selects 0% and 100% PWM duty cycle Selects buffered or unbuffered output compare/PWM operation
Address: T1SC0, $0025 and T2SC0, $0030 Bit 7 Read: Write: Reset: CH0F CH0IE 0 0 0 0 0 0 0 0 0 MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 6 5 4 3 2 1 Bit 0
Figure 11-9. TIM Channel 0 Status and Control Register (TSC0)
Address: T1SC1, $0028 and T2SC1, $0033 Bit 7 Read: Write: Reset: CH1F CH1IE 0 0 0 0 0 0 0 0 0 6 5 0 MS1A ELS1B ELS1A TOV1 CH1MAX 4 3 2 1 Bit 0
Figure 11-10. TIM Channel 1 Status and Control Register (TSC1)
Data Sheet 200
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) I/O Registers
CHxF -- Channel x Flag Bit When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIM counter registers matches the value in the TIM channel x registers. When TIM CPU interrupt requests are enabled (CHxIE = 1), clear CHxF by reading TIM channel x status and control register with CHxF set and then writing a logic 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF. Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect. 1 = Input capture or output compare on channel x 0 = No input capture or output compare on channel x CHxIE -- Channel x Interrupt Enable Bit This read/write bit enables TIM CPU interrupt service requests on channel x. Reset clears the CHxIE bit. 1 = Channel x CPU interrupt requests enabled 0 = Channel x CPU interrupt requests disabled MSxB -- Mode Select Bit B This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM1 channel 0 and TIM2 channel 0 status and control registers. Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose I/O. Reset clears the MSxB bit. 1 = Buffered output compare/PWM operation enabled 0 = Buffered output compare/PWM operation disabled MSxA -- Mode Select Bit A When ELSxB:ELSxA 0:0, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 11-3. 1 = Unbuffered output compare/PWM operation 0 = Input capture operation
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM) Data Sheet 201
Timer Interface Module (TIM)
When ELSxB:ELSxA = 0:0, this read/write bit selects the initial output level of the TCHx pin. See Table 11-3. Reset clears the MSxA bit. 1 = Initial output level low 0 = Initial output level high
NOTE:
Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC). ELSxB and ELSxA -- Edge/Level Select Bits When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x. When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs. When ELSxB and ELSxA are both clear, channel x is not connected to an I/O port, and pin TCHx is available as a general-purpose I/O pin. Table 11-3 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits. Table 11-3. Mode, Edge, and Level Selection
MSxB:MSxA X0 X1 00 00 00 01 01 01 1X 1X 1X ELSxB:ELSxA 00 Output preset 00 01 10 11 01 10 11 01 10 11 Output compare or PWM Buffered output compare or buffered PWM Input capture Pin under port control; initial output level low Capture on rising edge only Capture on falling edge only Capture on rising or falling edge Toggle output on compare Clear output on compare Set output on compare Toggle output on compare Clear output on compare Set output on compare Mode Configuration Pin under port control; initial output level high
Data Sheet 202
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor
Timer Interface Module (TIM) I/O Registers
NOTE:
Before enabling a TIM channel register for input capture operation, make sure that the TCHx pin is stable for at least two bus clocks. TOVx -- Toggle On Overflow Bit When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit. 1 = Channel x pin toggles on TIM counter overflow 0 = Channel x pin does not toggle on TIM counter overflow
NOTE:
When TOVx is set, a TIM counter overflow takes precedence over a channel x output compare if both occur at the same time. CHxMAX -- Channel x Maximum Duty Cycle Bit When the TOVx bit is at logic 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100%. As Figure 11-11 shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared.
OVERFLOW OVERFLOW OVERFLOW OVERFLOW OVERFLOW
PERIOD TCHx
OUTPUT COMPARE CHxMAX
OUTPUT COMPARE
OUTPUT COMPARE
OUTPUT COMPARE
Figure 11-11. CHxMAX Latency 11.10.5 TIM Channel Registers These read/write registers contain the captured TIM counter value of the input capture function or the output compare value of the output compare function. The state of the TIM channel registers after reset is unknown.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Timer Interface Module (TIM) Data Sheet 203
Timer Interface Module (TIM)
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read. In output compare mode (MSxB:MSxA 0:0), writing to the high byte of the TIM channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written.
Address: T1CH0H, $0026 and T2CH0H, $0031 Bit 7 Read: Bit 15 Write: Reset: Indeterminate after reset 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0
Figure 11-12. TIM Channel 0 Register High (TCH0H)
Address: T1CH0L, $0027 and T2CH0L $0032 Bit 7 Read: Bit 7 Write: Reset: Indeterminate after reset 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0
Figure 11-13. TIM Channel 0 Register Low (TCH0L)
Address: T1CH1H, $0029 and T2CH1H, $0034 Bit 7 Read: Bit 15 Write: Reset: Indeterminate after reset 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0
Figure 11-14. TIM Channel 1 Register High (TCH1H)
Address: T1CH1L, $002A and T2CH1L, $0035 Bit 7 Read: Bit 7 Write: Reset: Indeterminate after reset 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0
Figure 11-15. TIM Channel 1 Register Low (TCH1L)
Data Sheet 204 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Timer Interface Module (TIM) Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 12. Timebase Module (TBM)
12.1 Contents
12.2 12.3 12.4 12.5 12.6 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206 Timebase Register Description. . . . . . . . . . . . . . . . . . . . . . . . 207 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208
12.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 12.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209 12.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
12.2 Introduction
This section describes the timebase module (TBM). The TBM will generate periodic interrupts at user selectable rates using a counter clocked by the selected OSCCLK clock from the oscillator module. This TBM version uses 18 divider stages, eight of which are user selectable.
12.3 Features
Features of the TBM module include: * * Software programmable 8s, 4s, 2s, 1s, 2ms, 1ms, 0.5ms, and 0.25ms periodic interrupt using 32.768-kHz OSCCLK clock User selectable oscillator clock source enable during stop mode to allow periodic wake-up from stop
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Timebase Module (TBM)
Data Sheet 205
Timebase Module (TBM) 12.4 Functional Description
This module can generate a periodic interrupt by dividing the oscillator clock frequency, OSCCLK. The counter is initialized to all 0s when TBON bit is cleared. The counter, shown in Figure 12-1, starts counting when the TBON bit is set. When the counter overflows at the tap selected by TBR2:TBR0, the TBIF bit gets set. If the TBIE bit is set, an interrupt request is sent to the CPU. The TBIF flag is cleared by writing a 1 to the TACK bit. The first time the TBIF flag is set after enabling the timebase module, the interrupt is generated at approximately half of the overflow period. Subsequent events occur at the exact period. The reference clock OSCCLK is derived from the oscillator module, see 7.3.2 TBM Reference Clock Selection.
TBON
OSCCLK
/2
/2
/2 /8
/2
/2 / 16
/2 / 32
/2 / 64
/2
/2
/2
/2 / 2048
From OSC module (See Section 7. Oscillator (OSC).)
TBMINT
/2
/2
/2
/2
/2 / 32768
/2 / 65536
/2 / 131072 / 262144
TACK
TBR0
TBR2
TBR1
TBIF 000 001 010 011 100 101 110 111 SEL R
TBIE
Figure 12-1. Timebase Block Diagram
Data Sheet 206
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Timebase Module (TBM) Freescale Semiconductor
Timebase Module (TBM) Timebase Register Description
12.5 Timebase Register Description
The timebase has one register, the TBCR, which is used to enable the timebase interrupts and set the rate.
Address: $0046 Bit 7 Read: Write: Reset: 0 0 0 0 TBIF TBR2 TBR1 TBR0 TACK 0
R
6
5
4
3 0
2 TBIE 0 = Reserved
1 TBON 0
Bit 0 R 0
= Unimplemented
Figure 12-2. Timebase Control Register (TBCR) TBIF -- Timebase Interrupt Flag This read-only flag bit is set when the timebase counter has rolled over. 1 = Timebase interrupt pending 0 = Timebase interrupt not pending TBR2-TBR0 -- Timebase Rate Selection These read/write bits are used to select the rate of timebase interrupts as shown in Table 12-1. Table 12-1. Timebase Rate Selection for OSCCLK = 32.768 kHz
Timebase Interrupt Rate TBR2 0 0 0 0 1 1 1 1 TBR1 0 0 1 1 0 0 1 1 TBR0 0 1 0 1 0 1 0 1 Divider Hz 262144 131072 65536 32768 64 32 16 8 0.125 0.25 0.5 1 512 1024 2048 4096 ms 8000 4000 2000 1000 ~2 ~1 ~0.5 ~0.24 Data Sheet 207
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Timebase Module (TBM)
Timebase Module (TBM)
NOTE:
Do not change TBR2-TBR0 bits while the timebase is enabled (TBON = 1). TACK -- Timebase ACKnowledge The TACK bit is a write-only bit and always reads as 0. Writing a logic 1 to this bit clears TBIF, the timebase interrupt flag bit. Writing a logic 0 to this bit has no effect. 1 = Clear timebase interrupt flag 0 = No effect TBIE -- Timebase Interrupt Enabled This read/write bit enables the timebase interrupt when the TBIF bit becomes set. Reset clears the TBIE bit. 1 = Timebase interrupt enabled 0 = Timebase interrupt disabled TBON -- Timebase Enabled This read/write bit enables the timebase. Timebase may be turned off to reduce power consumption when its function is not necessary. The counter can be initialized by clearing and then setting this bit. Reset clears the TBON bit. 1 = Timebase enabled 0 = Timebase disabled and the counter initialized to 0s
12.6 Interrupts
The timebase module can interrupt the CPU on a regular basis with a rate defined by TBR2-TBR0. When the timebase counter chain rolls over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase interrupt, the counter chain overflow will generate a CPU interrupt request. The interrupt vector is defined in Table 2-1 . Vector Addresses. Interrupts must be acknowledged by writing a logic 1 to the TACK bit.
Data Sheet 208
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Timebase Module (TBM) Freescale Semiconductor
Timebase Module (TBM) Low-Power Modes
12.7 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
12.7.1 Wait Mode The timebase module remains active after execution of the WAIT instruction. In wait mode, the timebase register is not accessible by the CPU. If the timebase functions are not required during wait mode, reduce the power consumption by stopping the timebase before enabling the WAIT instruction.
12.7.2 Stop Mode The timebase module may remain active after execution of the STOP instruction if the oscillator has been enabled to operate during stop mode through the stop mode oscillator enable bit (STOP_ICLKEN, STOP_RCLKEN, or STOP_XCLKEN) for the selected oscillator in the CONFIG2 register. The timebase module can be used in this mode to generate a periodic walk-up from stop mode. If the oscillator has not been enabled to operate in stop mode, the timebase module will not be active during STOP mode. In stop mode the timebase register is not accessible by the CPU. If the timebase functions are not required during stop mode, reduce the power consumption by stopping the timebase before enabling the STOP instruction.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Timebase Module (TBM)
Data Sheet 209
Timebase Module (TBM)
Data Sheet 210
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Timebase Module (TBM) Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 13. Pulse Width Modulator (PWM)
13.1 Contents
13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 PWM Period and Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . 214 PWM Automatic Phase Control . . . . . . . . . . . . . . . . . . . . . . .215 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
13.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 13.10.1 PWM Control Register (PWMCR) . . . . . . . . . . . . . . . . . . . 217 13.10.2 PWM Clock Control Register (PWMCCR) . . . . . . . . . . . . . 218 13.10.3 PWM Data Registers (PWMDR0-PWMDR2) . . . . . . . . . . 219 13.10.4 PWM Phase Control Register . . . . . . . . . . . . . . . . . . . . . . 220
13.2 Introduction
This section describes the pulse width modulator (PWM) module. The PWM module provides three 8-bit PWM output channels, with an independent 8-bit counter for each channel. The PWM period is equal to 1 256 x -------------- seconds, where PCLK is the PWM counter clock. P CLK For a 32MHz PWM counter clock, the PWM period is 8s (a PWM frequency of 125kHz). The automatic phase control feature allows phase delays between the channels. Figure 13-2 shows the structure of the PWM module.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Pulse Width Modulator (PWM) Data Sheet 211
Pulse Width Modulator (PWM)
NOTE:
The CGM's PLL must be running (enabled by setting PLLON bit in the PLL control register) if the CGMVCLK is selected for the PWM module input clock. (See Section 8. Clock Generator Module (CGM).)
13.3 Features
Features of the PWM include the following: * * * *
Addr. Register Name
Three independent PWM channels with independent counters PWM input clock select PWM input clock prescaler Automatic phase control
Bit 7 6 5 4 0 3 0 2 PCH2 0 0 1 PCH1 0 PCLK1 0 Bit 0 PCH0 0 PCLK0 0
$0051
Read: PWMEN2 PWMEN1 PWMEN0 PWM Control Register Write: (PWMCR) Reset: 0 0 0 Read: PWM Clock Control PCLKSEL Register Write: (PWMCCR) Reset: 0 0 0
0 0
0 0
$0052
0
0
0
0
0
$0053
Read: 0PWMD7 0PWMD6 0PWMD5 0PWMD4 0PWMD3 0PWMD2 0PWMD1 0PWMD0 PWM Data Register 0 Write: (PWMDR0) Reset: 0 0 0 0 0 0 0 0 Read: 1PWMD7 1PWMD6 1PWMD5 1PWMD4 1PWMD3 1PWMD2 1PWMD1 1PWMD0 PWM Data Register 1 Write: (PWMDR1) Reset: 0 0 0 0 0 0 0 0 Read: 2PWMD7 2PWMD6 2PWMD5 2PWMD4 2PWMD3 2PWMD2 2PWMD1 2PWMD0 PWM Data Register 2 Write: (PWMDR2) Reset: 0 0 0 0 0 0 0 0 Read: PWM Phase Control Register Write: (PWMPCR) Reset: PHEN 0 PHD6 0 PHD5 0 PHD4 0 PHD3 0 PHD2 0 PHD1 0 PHD0 0
$0054
$0055
$0056
= Unimplemented
Figure 13-1. PWM I/O Register Summary
Data Sheet 212 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Pulse Width Modulator (PWM) Freescale Semiconductor
Pulse Width Modulator (PWM) Features
INTERNAL BUS
CHANNEL 0 PWMCR 8-BIT PWM DATA REGISTER PWMR0 PCLK1
/2
/2
/2
PWMCLK S
A B1
CGMOUT FROM CGM CGMVCLK WHEN PCLKSEL=0, PWMCLK=CGMOUT. IF CGMVCLK IS SELECTED, CGM'S PLL MUST BE RUNNING.
MUX PCLK0 PCLK PCLKSEL PWMCCR
8-BIT DATA REGISTER BUFFER
8-BIT COUNTER
8-BIT COUNTER
8-BIT COUNTER
TO CHANNEL 1 COMPARATOR ZERO DETECTOR
TO CHANNEL 2
S LATCH R PWM0 Q
CHANNEL 0 OUTPUT LOGIC B1 A A S BS
1
PTC0/PWM0/CD PIN A IS SELECTED WHEN S=0
TO/FROM PTC0 LOGIC
PCH0 PWMCR
CDIF FROM ANALOG MODULE
CDOEN CONFIG2
CHANNEL 1 OUTPUT LOGIC PWM1 TO/FROM PTC1 LOGIC B1 A S PTC1/PWM1 PIN A IS SELECTED WHEN S=0 PCH1 PWMCR
CHANNEL 2 OUTPUT LOGIC PWM2 TO/FROM PTC2 LOGIC B1 A S PTC2/PWM2 PIN A IS SELECTED WHEN S=0 PCH2 PWMCR
Figure 13-2. PWM Block Diagram
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Pulse Width Modulator (PWM)
Data Sheet 213
Pulse Width Modulator (PWM) 13.4 PWM Period and Resolution
1 1 The PWM period is equal to 256 x -------------- , resolution is -------------- , where P CLK P CLK PCLK is the PWM counter clock. The value in the PWM data register (PWMDR) defines the period where the PWM output is high, the low period is equal to 256 minus that value. Each PWM channel has its own counter and I/O control bits so it can be turned on and off independently. Figure 13-3 shows the PWM output waveforms for a channel with different values in the PWM data register.
PWM PERIOD = 256 x T
PWMDR = 256
T PWMDR = 1
255 x T
PWMDR = 128
128 x T
128 x T
255 x T PWMDR = 255
T
NOTE: T =
1 PCLK
Figure 13-3. PWM Output Waveforms
Data Sheet 214
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Pulse Width Modulator (PWM) Freescale Semiconductor
Pulse Width Modulator (PWM) PWM Automatic Phase Control
13.5 PWM Automatic Phase Control
The automatic phase control function allows precise phase difference between the PWM output signals. Figure 13-4 shows the phase delays between the PWM output signals.
256 x T PWM2 256 x T
PHASE VALUE 1 PWM1
256 x T
PHASE VALUE 2 PWM0
256 x T
Figure 13-4. PWM Automatic Phase Control Use the following steps to generate phase difference on PWM channels: 1. Clear PWM enable bits, PWMEN[0:2], to logic 0. 2. Write delay value in PHD[0:6]. 3. Set PWM automatic phase control enable bit, PHEN, to logic 1. 4. Set the PWM channel enable bits, PCH[0:2], to logic 1. 5. Set the PWM enable bits, PWMEN[0:2], to logic 1, to enable the PWM counters. When phase control is enabled, the PWM2 counter will start counting immediately, but the PWM1 and PWM0 counters will be held at zero. After the PWM2 counter reaches the phase value, PH[0:6], the PWM1 counter is released and starts counting. Finally, when the PMW1 counter reaches the phase value, PH[0:6], PWM0 is released and starts counting. It is possible to change the value of PH[0:6] after the PWM1 counter has started and before the start of the PWM0 counter. This way, difference phases can be set between PWM2 and PWM1; PWM1 and PWM0.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Pulse Width Modulator (PWM) Data Sheet 215
Pulse Width Modulator (PWM)
The PH[0:6] value is used once to determine the start-up time of the different PWM counters. After that, all PWM counters become free running counters and the phase between the counters will remain unchanged. Changing the value of PH[0:6] after all PWM counters are running has no effect. The counters must first be disabled by clearing the PWM enable bits, PWMEN[0:2], to logic 0, before a new phase value is effective. Automatic phase control is only available with two (PWM2-PWM1) or three (PWM2-PWM0) PWM channels.
13.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
13.7 Wait Mode
The PWM module remains active after the execution of a WAIT instruction. In wait mode, the PWM registers are not accessible by the CPU. If PWM functions are not required during wait mode, reduce power consumption by disabling the PWM before executing the WAIT instruction.
13.8 Stop Mode
The PWM is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the PWM counters and outputs. PWM operation resumes when the MCU exits stop mode after an external interrupt.
Data Sheet 216
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Pulse Width Modulator (PWM) Freescale Semiconductor
Pulse Width Modulator (PWM) I/O Signals
13.9 I/O Signals
The PWM module has three output pins shared with port C: PTC0/PWM0/CD, PWM1/PTC1, and PTC2/PWM2. PTC0 is also shared with current flow detect output, CD, of the analog module, see (see 18.5 Port C).
13.10 I/O Registers
These I/O registers control PWM operation: * * * * PWM control register (PWMCR) PWM clock control register (PWMCCR) PWM phase control register (PWMPCR) Three PWM data registers (PWMDR0-PWMDR2)
13.10.1 PWM Control Register (PWMCR) The PWM control register (PWMCR) enables/disables the independent PWM counters and port pins used for the PWM channels.
Address: Read: PWMEN2 PWMEN1 PWMEN0 Write: Reset: 0 0 0 0 0 0 0 0 $0051 0 0 PCH2 PCH1 PCH0
= Unimplemented
Figure 13-5. PWM Control Register (PWMCR) PWMEN2-PWMEN0 -- PWM Enable Bits Writing a 0 to the PWMENx bit clears the corresponding PWM counter and force the PWM channel x output to 0. Reset clears these bits. 1 = PWM channel x enabled 0 = PWM channel x is disabled; PWM counter cleared to zero and PWM channel x output forced to zero
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Pulse Width Modulator (PWM)
Data Sheet 217
Pulse Width Modulator (PWM)
PCH2-PCH0 -- PWM Channel Enable Bits Setting a bit will enable the corresponding port pin to be a PWM output pin. When a bit is set, the DDR bit has no effect on the port function. 1 = Port pin is enabled for PWM output 0 = Port pin is standard I/O pin Exception for PTC0/PWM0/CD control: Table 13-1. PTC0 Pin Configuration
Pin CDOEN Bit ($001D) PCH0 Bit ($0051) Pin function
0 PTC0/PWM0/CD 0 1
0 1 X
PTC0 PWM0 CD
13.10.2 PWM Clock Control Register (PWMCCR) The PWM clock control register (PWMCCR) selects and defines the clock to the PWM counter, PCLK.
Address: Read: PCLKSEL Write: Reset: 0 0 0 0 0 0 0 0 $0052 0 0 0 0 0 PCLK1 PCLK0
= Unimplemented
Figure 13-6. PWM Clock Control Register (PWMCCR) PCLKSEL -- PWM Input Clock Select Bit This bit selects either the CGMOUT or CGMVCLK clock as the input clock to the PWM counters. Reset clears this bit. 1 = Select CGMVCLK as PWM input clock 0 = Select CGMOUT (CPU bus clock) as PWM input clock
Data Sheet 218
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Pulse Width Modulator (PWM) Freescale Semiconductor
Pulse Width Modulator (PWM) I/O Registers
PCLK1-PCLK0 -- PWM Clock Prescaler Bits These two bits select the divide ratio used to divide the PWM input clock. Table 13-2 shows the available clock divisions. Table 13-2. PWM Counter Clock Prescaler Selection
PCLK1 PCLK0 PWM Clock, PCLK
0 0 1 1
0 1 0 1
Source clock / 1 Source clock / 2 Source clock / 4 Source clock / 8
13.10.3 PWM Data Registers (PWMDR0-PWMDR2) The three PWM data registers (PWMDR0-PWMDR2) defines the high period for corresponding PWM channels.
Address: Read: 0PWMD7 0PWMD6 0PWMD5 0PWMD4 0PWMD3 0PWMD2 0PWMD1 0PWMD0 Write: Reset: 0 0 0 0 0 0 0 0 $0053
Figure 13-7. PWM Data Register 0 (PWMDR0)
Address: Read: 1PWMD7 1PWMD6 1PWMD5 1PWMD4 1PWMD3 1PWMD2 1PWMD1 1PWMD0 Write: Reset: 0 0 0 0 0 0 0 0 $0054
Figure 13-8. PWM Data Register 1 (PWMDR1)
Address: Read: 2PWMD7 2PWMD6 2PWMD5 2PWMD4 2PWMD3 2PWMD2 2PWMD1 2PWMD0 Write: Reset: 0 0 0 0 0 0 0 0 $0055
Figure 13-9. PWM Data Register 2 (PWMDR2)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Pulse Width Modulator (PWM)
Data Sheet 219
Pulse Width Modulator (PWM)
The value of each PWM data register is continuously compared with the content of a PWM counter to determine the state of each PWM channel output pin. A value of $00 loaded into these register results in a continuously low output on the corresponding PWM output pin. A value of $80 results in a 50% duty cycle output and so on. The maximum value, $FF correspond to an output which is a "1" for 255/256 of the PWM cycle. A new value written to the PWM data register will not be effective until the end of the current PWM period. Upon the end of the current PWM period, the contain of the PWM data register is loaded into the PWM data buffer, the value of the PWM data buffer controls the PWM output.
13.10.4 PWM Phase Control Register The PWM phase control register (PWMPCR) enables the automatic phase control and sets the phase values between the PWM channels.
Address: Read: PHEN Write: Reset: 0 0 0 0 0 0 0 0 PHD6 PHD5 PHD4 PHD3 PHD2 PHD1 PHD0 $0056
Figure 13-10. PWM Phase Control Register (PWMPCR) PHEN -- PWM Automatic Phase Control Enable Bit Setting this bit to 1 will enable the automatic phase control function. Reset clears this bit. 1 = Automatic phase control enabled 0 = Automatic phase control disabled PHD6-PHD0 -- PWM Phase Value Bits This 7-bit phase value is used to determined the start-up time of the different PWM counters when PHEN bit is set. Reset clears these bits.
Data Sheet 220
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Pulse Width Modulator (PWM) Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 14. Analog Module
14.1 Contents
14.2 14.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223 14.4.1 On-Chip Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . 223 14.4.2 Two-Stage Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 14.4.3 Amplifier Response Time . . . . . . . . . . . . . . . . . . . . . . . . . . 224 14.4.4 Current Flow Detection Amplifier . . . . . . . . . . . . . . . . . . . . 225 14.4.5 Current Flow Detect Output . . . . . . . . . . . . . . . . . . . . . . . . 225 14.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225
14.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 14.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 14.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 14.7 Analog Module I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . 226 14.7.1 Analog Module Control Register (AMCR) . . . . . . . . . . . . . 226 14.7.2 Analog Module Gain Control Register (AMGCR) . . . . . . . . 227 14.7.3 Analog Module Status and Control Register (AMSCR) . . . 228
14.2 Introduction
This section describes the analog module. The analog module is designed to be use in conjunction with the analog-to-digital converter module for monitoring temperature, charge and discharge currents in smart battery applications.
NOTE:
The analog module uses clock signals from the CGM's PLL, therefore the PLL must be running -- PLLON bit in the PLL control register must be set. (See Section 8. Clock Generator Module (CGM).)
Data Sheet Analog Module 221
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Analog Module 14.3 Features
The features of the analog module include the following: * * *
BATT +
Temperature sensor Current flow detection amplifier Two-stage amplifier
ATD1 ATD0 ADCICLK TO ADC FROM ADC DO[2:0] GAINA[3:0] GAINB[3:0]
ANALOG MODULE
OPIN2/ ATD1 EXTERNAL THERMISTOR BATT -
CLOCK DIVIDER
AMCDIV[1:0] AMCLK
INTERNAL TEMPERATURE SENSOR TSOUT OPCH[1:0] CGMVCLK FROM CGM
INTERNAL REFERENCE
-
DOF
BATT +
+
IN3 IN2
ISENSE RSENSE 0.01 VSSAM -9mV CGMXCLK VDD D Q CDIF R CDIFR PTC0 LOGIC CDIF AMIEN OPIF OPIN1/ ATD0 2-STAGE AMP OPOUT TO ADC
IN1 IN0
OPIFR
OPIF ANALOG MODULE INTERRUPT REQUEST TO IRQ LOGIC
BATT -
- +
VSSA
VDET
PTC0/ PWM0/ CD
CDOEN FROM CONFIG2
Figure 14-1. Analog Module Block Diagram
Data Sheet 222 Analog Module MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Analog Module Functional Description
Addr.
Register Name Read: Analog Module Control Register Write: (AMCR) Reset:
Bit 7 PWR1 0
6 PWR0 0 GAINB2 0
5 OPCH1 0 GAINB1 0 0 OPIFR U
4 OPCH0 0 GAINB0 0 OPIF
3 AMIEN 0 GAINA3 0 0
2 DO2 0 GAINA2 0 DOF
1 DO1 0 GAINA1 0 0 CDIFR
Bit 0 DO0 0 GAINA0 0 CDIF
$000E
$000F
Read: Analog Module Gain GAINB3 Control Register Write: (AMGCR) Reset: 0
Read: Analog Module Status and AMCDIV1 AMCDIV0 $0010 Control Register Write: (AMSCR) Reset: 0 0
0 U = Unaffected
0
0
U
0
= Unimplemented
Figure 14-2. Analog Module I/O Register Summary
14.4 Functional Description
Figure 14-1 shows the block diagram of the analog module. The central component of the analog module is the two-stage gain amplifier used for amplifying the small signals on the analog input pins, OPIN1 and OPIN2. These two signals feed into a multiplexer together with the signal from the internal temperature sensor and a reference input. The selected signal is then fed into the two-stage gain amplifier before going into the analog-to-digital converter (ADC) as OPOUT. The OPIN1 and OPIN2 pins can also feed directly into the ADC as channels ATD0 and ATD1 respectively, without any amplification.
14.4.1 On-Chip Temperature Sensor The on-chip temperature sensor is designed to measure temperatures from -20C to 70 C. The output of the internal temperature sensor TSOUT is amplified by the two-stage amplifier. The amplified temperature sensor signal is routed to the analog-to-digital converter for analog-to-digital conversion (see Figure 14-1).
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Analog Module
Data Sheet 223
Analog Module
14.4.2 Two-Stage Amplifier The two-stage amplifier is used to amplify small input signals from the on-chip temperature sensor or external voltage sources such as external thermistor and current sensing resistor, for temperature and current monitoring. The amplified signal, OPOUT, is fed to the ADC module for analog-to-digital conversion. The gain of the two-stage amplifier is defined by the GAINAx and GAINBx bits in the analog module gain control register (AMGCR) (see Figure 14-1).
14.4.3 Amplifier Response Time The two-stage amplifier requires the input signal to be stable for sampling. This signal hold-time varies with gain setting for stage-1 of the two-stage amplifier, and is determined by the formula: 10 + [(Gain of stage-1 amplifier - 1) x 2] AMCLK cycles The AMCLK clock is the analog amplifier clock, which is divided from the ADC clock, ADCICLK. The time for the two-stage amplifier to amplify the input signal to the desired output is dependent on the gain setting in both stages of the twostage amplifier. The amplifier response time is determined by the formula: 70 + (8 x Gain of stage-1) + (6 x Gain of stage-2) AMCLK cycles This amplifier response time should be added to the ADC conversion time to obtain the total time for the small-signal conversion. Therefore, conversion time for OPINx signals, with amplification is: Amplifier response time + ADC conversion time
Data Sheet 224 Analog Module
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Analog Module Interrupts
14.4.4 Current Flow Detection Amplifier The current flow detection amplifier is used to detect charge and discharge current flowing through an external sensing resistor, RSENSE. The current flow detection flag CDIF is set when the voltage at OPIN1 exceeds -9mV (typical) (0.9 ampere when RSENSE = 0.01). When set, CDIF can generate an interrupt request to the CPU when the analog module interrupt enable bit AMIEN is set (see Figure 14-1). 14.4.5 Current Flow Detect Output The current detect flag, CDIF, can be configured for direct control to other external circuitry. When the CDOEN bit in CONFIG2 is set, the status of CDIF is reflected on the PTC0/PWM0/CD pin. (See 5.5 Configuration Register 2 (CONFIG2) and 18.5 Port C.)
14.5 Interrupts
When the AMIEN bit is set, the analog module is capable of generating CPU interrupt requests. The interrupt vector is defined in Table 2-1 . Vector Addresses.
14.6 Low-Power Modes
The STOP and WAIT instructions put the MCU in low powerconsumption standby modes. 14.6.1 Wait Mode In wait mode the analog module if enabled, continues to operate and may generate an interrupt to trigger the MCU out of wait mode. 14.6.2 Stop Mode In stop mode, the temperature sensor and the two-stage amplifier are disabled, but the current flow detection amplifier (when enabled) continues to operate if the oscillator is enabled in stop mode. When AMIEN is set, CDIF can be used to wake-up the MCU from the stop mode.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Analog Module Data Sheet 225
Analog Module 14.7 Analog Module I/O Registers
Three registers control and monitor the operation of the analog module: * * * Analog module control register (AMCR) -- $000E Analog module gain control register (AMGCR) -- $000F Analog module status and control register (AMSCR) -- $0010
14.7.1 Analog Module Control Register (AMCR) The analog module control register (AMCR): * * * *
Address:
Powers on and off analog sub-modules Selects the input signal to the two-stage amplifier Enables analog module interrupt requests Offset adjustment for calibration
$000E Bit 7 6 PWR0 0 5 OPCH1 0 4 OPCH0 0 3 AMIEN 0 2 DO2 0 1 DO1 0 Bit 0 DO0 0
Read: PWR1 Write: Reset: 0
Figure 14-3. Analog Module Control Register (AMCR) PWR1-PWR0 -- Analog Module Power Control Bits These read/write bits power on/off the different functions within the analog module. Reset clears the PWR1 and PWR0 bits. Table 14-1. Analog Module Power Control
PWR1 0 0 1 1 PWR0 0 1 0 1 Current Detect Module Off On Off On Temperature Sensor Off Off Off On Two-Stage Amplifier Off Off On On
Data Sheet 226 Analog Module
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Analog Module Analog Module I/O Registers
OPCH1-OPCH0 -- Amplifier Channel Select Control Bits These read/write bits select the input source to be amplified by the two-stage amplifier. Reset clears the OPCH1 and OPCH0 bits. Table 14-2. Amplifier Channel Select Control bits
OPCH1 0 0 1 1 OPCH0 0 1 0 1 Input Source VSSAM OPIN1/ATD0 OPIN2/ATD1 TSOUT (internal) Comments External negative reference External pin External pin Internal temperature sensor
AMIEN -- Analog Module Interrupt Enable Setting this bit will enable the CDIF and OPIF flags to generate an CPU interrupt requests. Reset clears the AMIEN bit. 1 = Analog module CPU interrupt requests enabled 0 = Analog module CPU interrupt requests disabled DO[2:0] -- DC Offset Control Bits Set these bits to zero for optimum analog module performance.
14.7.2 Analog Module Gain Control Register (AMGCR) The analog module gain control register (AMGCR) selects the two gains for the two-stage amplifier.
Address: $000F Bit 7 Read: GAINB3 Write: Reset: 0 0 0 0 0 0 0 0 GAINB2 GAINB1 GAINB0 GAINA3 GAINA2 GAINA1 GAINA0 6 5 4 3 2 1 Bit 0
Figure 14-4. Analog Module Gain Control Register (AMGCR)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Analog Module
Data Sheet 227
Analog Module
GAINB[3:0] -- Analog Module 2nd-stage Gain Control Bits These read/write bits define the 2nd-stage gain of the two-stage amplifier. The overall gain of the amplifier equals the 1st-stage gain multiplied by the 2nd-stage gain. Reset clears the GAINB[3:0] bits. GAINA[3:0] -- Analog Module 1st-stage Gain Control Bits These read/write bits define the 1st-stage gain of the two-stage amplifier. The overall gain of the amplifier equals the 1st-stage gain multiplied by the 2nd-stage gain. Reset clears the GAINA[3:0] bits. Table 14-3. Analog Module Gain Values
GAINx3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 GAINx2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 GAINx1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 GAINx0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Amplifier Gain 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
14.7.3 Analog Module Status and Control Register (AMSCR) The analog module status and control register (AMSCR): * * * *
Data Sheet 228 Analog Module
Selects input clock divider value Monitors and clears the amplifier ready interrupt flag Monitors DC offset flag Monitors and clears the current detect interrupt flag
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Analog Module Analog Module I/O Registers
Address:
$0010 Bit 7 6 5 0 AMCDIV1 AMCDIV0 OPIFR 0 0 U 0 U = Unaffected 0 0 4 OPIF 3 0 2 DOF 1 0 CDIFR U 0 Bit 0 CDIF
Read: Write: Reset:
= Unimplemented
Figure 14-5. Analog Module Status and Control Register (AMSCR) AMCDIV[1:0] -- Analog Module Clock Divider Control Bits These read/write bits select the analog module input clock divider value. The ADC clock, ADICLK, is divided by this value to obtain the AMCLK. Reset clears the AMCDIV[1:0] bits. Table 14-4. Analog Module Clock Divider Select
AMCDIV1 0 0 1 1 AMCDIV0 0 1 0 1 Divider Value 2 4 8 16
Set AMCDIV1 and AMCDIV0 bits to zero for optimum analog module performance. OPIFR -- Amplifier Ready Interrupt Flag Reset Writing a logic 1 to this write-only bit clears the OPIF bit. OPIFR always reads as a logic 0. Reset does not affect OPIFR. 1 = Clear OPIF bit 0 = No affect on OPIF bit OPIF -- Amplifier Ready Interrupt Flag This read-only bit is set when the output of the two-stage amplifier is ready. A CPU interrupt request will be generated if the AMIEN bit is also set. Reset clears OPIF bit. 1 = Two-stage amplifier output is ready 0 = Two-stage amplifier output is not ready
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Analog Module Data Sheet 229
Analog Module
DOF -- DC Offset Flag This is a reserved bit. CDIFR -- Current Detect Interrupt Flag Reset Writing a logic 1 to this write-only bit clears the CDIF bit. CDIFR always reads as a logic 0. Reset does not affect CDIFR. 1 = Clear CDIF bit 0 = No affect on CDIF bit CDIF -- Current Detect Interrupt Flag This read-only bit is set when the voltage developed across the sense resistor, RSENSE is equal to or greater than VDET (the current sense amplifier comparator trip voltage, typically -9mV). CDIF generates an CPU interrupt request if AMIEN bit is also set. The CDIF bit is cleared by writing a logic 1 to the CDIFR bit. Reset clears CDIF bit. 1 = Current detect interrupt has occurred 0 = No current detect interrupt since CDIF last cleared
Data Sheet 230 Analog Module
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 15. Analog-to-Digital Converter (ADC)
15.1 Contents
15.2 15.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 15.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 15.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235 15.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 15.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 15.4.5 Auto-scan Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 15.4.6 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 15.4.7 Data Register Interlocking . . . . . . . . . . . . . . . . . . . . . . . . . 239 15.4.8 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 15.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239
15.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 15.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239 15.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 15.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 15.7.1 ADC Voltage In (VADIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 15.7.2 ADC Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . 240 15.7.3 ADC Analog Ground Pin (VSSA). . . . . . . . . . . . . . . . . . . . . 240 15.7.4 ADC Voltage Reference High Pin (VREFH). . . . . . . . . . . . . 241 15.7.5 ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . . 241 15.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 15.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .242 15.8.2 ADC Clock Control Register. . . . . . . . . . . . . . . . . . . . . . . . 244 15.8.3 ADC Data Register 0 (ADRH0 and ADRL0). . . . . . . . . . . . 246 15.8.4 ADC Auto-Scan Mode Data Registers (ADRL1-ADRL3). . 248 15.8.5 ADC Auto-Scan Control Register (ADASCR). . . . . . . . . . . 248
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC) Data Sheet 231
Analog-to-Digital Converter (ADC) 15.2 Introduction
This section describes the analog-to-digital converter (ADC). The ADC is a 14-channel 10-bit linear successive approximation ADC.
15.3 Features
Features of the ADC module include: * * * * * * * * * Fourteen channels with multiplexed input High impedance buffered input Linear successive approximation with monotonicity 10-bit resolution Single or continuous conversion Auto-scan conversion on four channels Conversion complete flag or conversion complete interrupt Selectable ADC clock Conversion result justification - 8-bit truncated mode - Right justified mode - Left justified mode - Left justified sign mode
Data Sheet 232
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor
Analog-to-Digital Converter (ADC) Features
Addr.
Register Name Read: ADC Status and Control Register Write: (ADSCR) Reset: Read: ADC Clock Control Register Write: (ADICLK) Reset:
Bit 7 COCO
6 AIEN 0 ADIV1 0 ADx R 0 ADx R 0 AD8 R 0 AD8 R 0 AD8 R 0 0
5 ADCO 0 ADIV0 0 ADx R 0 ADx R 0 AD7 R 0 AD7 R 0 AD7 R 0 0
4 ADCH4 1 ADICLK 0 ADx R 0 ADx R 0 AD6 R 0 AD6 R 0 AD6 R 0 0
3 ADCH3 1 MODE1 0 ADx R 0 ADx R 0 AD5 R 0 AD5 R 0 AD5 R 0 0
2 ADCH2 1 MODE0 1 ADx R 0 ADx R 0 AD4 R 0 AD4 R 0 AD4 R 0 AUTO1 0 = Reserved
1 ADCH1 1 0
Bit 0 ADCH0 1 0 R
$0057
0 ADIV2 0 ADx R 0 ADx R 0 AD9 R 0 AD9 R 0 AD9 R 0 0
$0058
0 ADx R 0 ADx R 0 AD3 R 0 AD3 R 0 AD3 R 0 AUTO0 0
0 ADx R 0 ADx R 0 AD2 R 0 AD2 R 0 AD2 R 0 ASCAN 0
Read: ADC Data Register High 0 $0059 Write: (ADRH0) Reset: Read: ADC Data Register Low 0 $005A Write: (ADRL0) Reset: Read: ADC Data Register Low 1 $005B Write: (ADRL1) Reset: Read: ADC Data Register Low 2 $005C Write: (ADRL3) Reset: Read: ADC Data Register Low 3 $005D Write: (ADRL3) Reset: Read: ADC Auto-scan Control Register Write: (ADASCR) Reset:
$005E
0
0
0
0
0 R
= Unimplemented
Figure 15-1. ADC I/O Register Summary
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC)
Data Sheet 233
Analog-to-Digital Converter (ADC) 15.4 Functional Description
The ADC provides thirteen pins for sampling external sources at pins PTA0/ATD2-PTA5/ATD7, PTC3/ATD8-PTC7/ATD12, and OPIN1-OPIN2; one internal source from the analog module. An analog multiplexer allows the single ADC converter to select one of fourteen ADC channels as ADC voltage in (VADIN). VADIN is converted by the successive approximation register-based analog-to-digital converter. When the conversion is completed, ADC places the result in the ADC data register, high and low byte (ADRH0 and ADRL0), and sets a flag or generates an interrupt. An additional three ADC data registers (ADRL1-ADRL3) are available to store the individual converted data for ADC channels ATD1-ATD3 when the auto-scan mode is enabled. Data from channel ATD0 is stored in ADRL0 in the auto-scan mode. Figure 15-2 shows the structure of the ADC module.
15.4.1 ADC Port I/O Pins PTA0-PTA5 and PTC3-PTC7 are general-purpose I/O pins that are shared with the ADC channels, OPIN1 and OPIN2 are two analog inputs that are always connected to the ADC channel select multiplexer. The channel select bits, ADCH[4:0], define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as generalpurpose I/O pins. Writes to the port data register or data direction register will not have any affect on the port pin that is selected by the ADC. Read of a port pin which is in use by the ADC will return the pin condition if the corresponding DDR bit is at logic 0. If the DDR bit is at logic 1, the value in the port data latch is read.
Data Sheet 234
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor
Analog-to-Digital Converter (ADC) Functional Description
15.4.2 Voltage Conversion When the input voltage to the ADC equals VREFH, the ADC converts the signal to $3FF (full scale). If the input voltage equals VREFL, the ADC converts it to $000. Input voltages between VREFH and VREFL is a straight-line linear conversion. All other input voltages will result in $3FF if greater than VREFH and $000 if less than VREFL.
NOTE:
INTERNAL DATA BUS
Input voltage should not exceed the analog supply voltages.
READ DDRAx/DDRCx WRITE DDRAx/DDRCx RESET WRITE PTAx/PTCx DDRAx/DDRCx PTAx/PTCx PTAx/PTCx DISABLE
READ PTAx/PTCx ATD2-ATD12 (11 CHANNELS) ADC DATA REGISTERS ADRH0 ADRL0 ADRL1 ADRL2 ADRL3 DISABLE OPIN1 OPIN2 VREFH VREFL OPOUT FROM ANALOG MODULE CHANNEL SELECT
INTERRUPT LOGIC
CONVERSION COMPLETE ADC
ADC VOLTAGE IN (VADIN)
AIEN
COCO CGMXCLK BUS CLOCK
ADCICLK MUX CLOCK GENERATOR ADCH[4:0] ADIV[2:0] ADICLK
ASCAN
2-BIT UP-COUNTER
AUTO[1:0]
Figure 15-2. ADC Block Diagram
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC) Data Sheet 235
Analog-to-Digital Converter (ADC)
15.4.3 Conversion Time Conversion starts after a write to the ADSCR. One conversion will take between 16 and 17 ADC clock cycles, therefore: Conversion time = 16 to17 ADC cycles ADC frequency
Number of bus cycles = conversion time x bus frequency The ADC conversion time is determined by the clock source chosen and the divide ratio selected. The clock source is either the bus clock or CGMXCLK and is selectable by the ADICLK bit located in the ADC clock register. The divide ratio is selected by the ADIV[2:0] bits. For example, if a 4MHz CGMXCLK is selected as the ADC input clock source, with a divide-by-four prescale, and the bus speed is set at 2MHz: Conversion time = 16 to17 ADC cycles = 16 to 17 s 4MHz / 4
Number of bus cycles = 16 s x 2MHz = 32 to 34 cycles
NOTE:
The ADC frequency must be between fADIC minimum and fADIC maximum to meet ADC specifications. (See 24.12 5.0V ADC Electrical Characteristics.) Since an ADC cycle may comprised of several bus cycles (two in the previous example) and the start of a conversion is initiated by a bus cycle write to the ADSCR, from zero to two additional bus cycles may occur before the start of the initial ADC cycle. This results in a fractional ADC cycle and is represented as the 17th cycle.
NOTE:
When OPOUT is selected as the ADC input, VADIN, the conversion time is the accumulation of the op-amp settling time and the normal ADC conversion time. After writing to the ADSCR to initiate a conversion cycle, the ADC module sends a signal to the analog module for a OPOUT output. A signal will be sent back to the ADC by the analog module to indicate that OPOUT signal is ready for sampling. Upon receiving this signal, the ADC module starts its normal conversion cycle. (See 24.12 5.0V ADC Electrical Characteristics.)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor
Data Sheet 236
Analog-to-Digital Converter (ADC) Functional Description
15.4.4 Continuous Conversion In the continuous conversion mode, the ADC continuously converts the selected channel, filling the ADC data register with new data after each conversion. Data from the previous conversion will be overwritten whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The COCO bit is set after each conversion and can be cleared by writing to the ADC status and control register or reading of the ADRL0 data register.
15.4.5 Auto-scan Mode In auto-scan mode, the ADC input channel is selected by the value of the 2-bit up-counter, instead of the channel select bits, ADCH[4:0]. The value of the counter also defines the data register ADRLx to be used to store the conversion result. When ASCAN bit is set, a write to ADC status and control register (ADSCR) will reset the auto-scan up-counter and ADC conversion will start on the channel 0 up to the channel number defined by the integer value of AUTO[1:0]. After a channel conversion is completed, data is stored in ADRLx and the COCO-bit will be set. The counter value will be incremented by 1 and a new conversion will start. This process will continue until the counter value reaches the value of AUTO[1:0]. When this happens, it indicates that the current channel is the last channel to be converted. Upon the completion on the last channel, the counter value will not be incremented and no further conversion will be performed. To start another auto-scan cycle, a write to ADSCR must be performed.
NOTE:
The system only provides 8-bit data storage in auto-scan code, user must clear MODE[1:0] bits to select 8-bit truncation mode before entering auto-scan mode. It is recommended that user should disable the auto-scan function before switching channel and also before entering STOP mode.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC)
Data Sheet 237
Analog-to-Digital Converter (ADC)
15.4.6 Result Justification The conversion result may be formatted in four different ways. * * * * Left justified Right justified Left justified sign data mode 8-bit truncation
All four of these modes are controlled using MODE0 and MODE1 bits located in the ADC clock control register (ADICLK). Left justification will place the eight most significant bits (MSB) in the corresponding ADC data register high (ADRH). This may be useful if the result is to be treated as an 8-bit result where the least significant two bits, located in the ADC data register low (ADRL) can be ignored. However, you must read ADRL after ADRH or else the interlocking will prevent all new conversions from being stored. Right justification will place only the two MSBs in the corresponding ADC data register high (ADRH) and the eight LSB bits in ADC data register low (ADRL). This mode of operation typically is used when a 10-bit unsigned result is desired. Left justified sign data mode is similar to left justified mode with one exception. The MSB of the 10-bit result, AD9 located in ADRH is complemented. This mode of operation is useful when a result, represented as a signed magnitude from mid-scale, is needed. Finally, 8-bit truncation mode will place the eight MSBs in ADC data register low (ADRL). The two LSBs are dropped. This mode of operation is used when compatibility with 8-bit ADC designs are required. No interlocking between ADRH and ADRL is present.
Data Sheet 238
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor
Analog-to-Digital Converter (ADC) Interrupts
15.4.7 Data Register Interlocking Reading ADRH in any 10-bit mode latches the contents of ADRL until ADRL is read. Until ADRL is read all subsequent ADC results will be lost. This register interlocking can also be reset by a write to the ADC status and control register, or ADC clock control register. A power-on reset or reset will also clear the interlocking. Note that an external conversion request will not reset the lock.
15.4.8 Monotonicity The conversion process is monotonic and has no missing codes.
15.5 Interrupts
When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt after each ADC conversion or after an auto-scan conversion cycle. A CPU interrupt is generated if the COCO bit is at logic 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled. The interrupt vector is defined in Table 2-1 . Vector Addresses.
15.6 Low-Power Modes
The STOP and WAIT instructions put the MCU in low powerconsumption standby modes.
15.6.1 Wait Mode The ADC continues normal operation in wait mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting the ADCH[4:0] bits to logic 1's before executing the WAIT instruction.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC)
Data Sheet 239
Analog-to-Digital Converter (ADC)
15.6.2 Stop Mode The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the analog circuitry before attempting a new ADC conversion after exiting stop mode.
15.7 I/O Signals
The ADC module has fourteen channels, eleven channels are shared with port A and port C I/O pins; two channels are analog pins, OPIN1 and OPIN2, that are shared with the analog module; and one channel, OPOUT, from the analog module.
15.7.1 ADC Voltage In (VADIN) VADIN is the input voltage signal from one of the fourteen channels to the ADC module.
15.7.2 ADC Analog Power Pin (VDDA) The ADC analog portion uses VDDA as its power pin. Connect the VDDA pin to the same voltage potential as VDD. External filtering may be necessary to ensure clean VDDA for good results.
NOTE:
Route VDDA carefully for maximum noise immunity and place bypass capacitors as close as possible to the package.
15.7.3 ADC Analog Ground Pin (VSSA) The ADC analog portion uses VSSA as its ground pin. Connect the VSSA pin to the same voltage potential as VSS.
Data Sheet 240
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor
Analog-to-Digital Converter (ADC) I/O Registers
15.7.4 ADC Voltage Reference High Pin (VREFH) VREFH is the power supply for setting the reference voltage VREFH. Connect the VREFH pin to the same voltage potential as VDDA. There will be a finite current associated with VREFH (see Section 24. Electrical Specifications).
NOTE:
Route VREFH carefully for maximum noise immunity and place bypass capacitors as close as possible to the package.
15.7.5 ADC Voltage Reference Low Pin (VREFL) VREFL is the lower reference supply for the ADC. Connect the VREFL pin to the same voltage potential as VSSA. There will be a finite current associated with VREFL (see Section 24. Electrical Specifications).
15.8 I/O Registers
These I/O registers control and monitor ADC operation: * * * * * * * * ADC status and control register (ADSCR) -- $0057 ADC clock control register (ADICLK) -- $0058 ADC data register high 0 (ADRH0) -- $0059 ADC data register low 0 (ADRL0) -- $005A ADC data register low 1 (ADRL1) -- $005B ADC data register low 2 (ADRL2) -- $005C ADC data register low 3 (ADRL3) -- $005D ADC auto-scan control register (ADASCR) -- $005E
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC)
Data Sheet 241
Analog-to-Digital Converter (ADC)
15.8.1 ADC Status and Control Register Function of the ADC status and control register is described here.
Address: Read: Write: Reset: 0 0 0 1 1 1 1 1 $0057 COCO AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0
= Unimplemented
Figure 15-3. ADC Status and Control Register (ADSCR) COCO -- Conversions Complete Bit When the AIEN bit is a logic 0, the COCO is a read-only bit which is set each time a conversion is completed. This bit is cleared whenever the ADSCR is written, or whenever the ADC clock control register is written, or whenever the ADC data register low, ADRLx, is read. If the AIEN bit is logic 1, the COCO bit always read as logic 0. ADC interrupt will be generated at the end if an ADC conversion. Reset clears the COCO bit. 1 = Conversion completed (AIEN = 0) 0 = Conversion not completed (AIEN = 0)/CPU interrupt (AIEN=1) AIEN -- ADC Interrupt Enable Bit When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is cleared when the data register, ADR0, is read or the ADSCR is written. Reset clears the AIEN bit. 1 = ADC interrupt enabled 0 = ADC interrupt disabled ADCO -- ADC Continuous Conversion Bit When set, the ADC will convert samples continuously and update the ADC data register at the end of each conversion. Only one conversion is allowed when this bit is cleared. Reset clears the ADCO bit. 1 = Continuous ADC conversion 0 = One ADC conversion This bit should not be set when auto-scan mode is enabled; i.e. when ASCAN=1.
Data Sheet 242
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor
Analog-to-Digital Converter (ADC) I/O Registers
ADCH[4:0] -- ADC Channel Select Bits ADCH[4:0] form a 5-bit field which is used to select one of the ADC channels when not in auto-scan mode. The five channel select bits are detailed in Table 15-1.
NOTE:
Care should be taken when using a port pin as both an analog and a digital input simultaneously to prevent switching noise from corrupting the analog signal. Recovery from the disabled state requires one conversion cycle to stabilize. Table 15-1. MUX Channel Select
NOTE:
ADCH4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
ADCH3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
ADCH2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1
ADCH1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1
ADCH0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1
ADC Channel ATD0 ATD1 ATD2 ATD3 ATD4 ATD5 ATD6 ATD7 ATD8 ATD9 ATD10 ATD11 ATD12 ATD13 ATD14 ATD28 ATD29 ATD30 ADC powered-off
Input Select OPIN1 OPIN2 PTA0 PTA1 PTA2 PTA3 PTA4 PTA5 PTC3 PTC4 PTC5 PTC6 PTC7 OPOUT Reserved VREFH (see Note 2) VREFL (see Note 2) --
NOTES: 1. If any unused channels are selected, the resulting ADC conversion will be unknown. 2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the operation of the ADC converter both in production test and for user applications.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC)
Data Sheet 243
Analog-to-Digital Converter (ADC)
15.8.2 ADC Clock Control Register The ADC clock control register (ADICLK) selects the clock frequency for the ADC.
Address: Read: ADIV2 Write: Reset: 0 0 0 0 0 R 1 = Reserved 0 ADIV1 ADIV0 ADICLK MODE1 MODE0 R 0 $0058 0 0
= Unimplemented
Figure 15-4. ADC Clock Control Register (ADICLK) ADIV[2:0] -- ADC Clock Prescaler Bits ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC clock. Table 15-2 shows the available clock configurations. The ADC clock should be set to between 500kHz and 2MHz. Table 15-2. ADC Clock Divide Ratio
ADIV2 0 0 0 0 1
X = don't care
ADIV1 0 0 1 1 X
ADIV0 0 1 0 1 X
ADC Clock Rate ADC input clock / 1 ADC input clock / 2 ADC input clock / 4 ADC input clock / 8 ADC input clock / 16
ADICLK -- ADC Input Clock Select Bit ADICLK selects either bus clock or CGMXCLK as the input clock source to generate the internal ADC clock. Reset selects CGMXCLK as the ADC clock source.
Data Sheet 244
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor
Analog-to-Digital Converter (ADC) I/O Registers
If the external clock (CGMXCLK) is equal to or greater than 1MHz, CGMXCLK can be used as the clock source for the ADC. If CGMXCLK is less than 1MHz, use the PLL-generated bus clock as the clock source. As long as the internal ADC clock is at fADIC, correct operation can be guaranteed. 1 = Internal bus clock 0 = External clock, CGMXCLK fADIC = CGMXCLK or bus frequency ADIV[2:0]
MODE1 and MODE0 -- Modes of Result Justification MODE1 and MODE0 selects between four modes of operation. The manner in which the ADC conversion results will be placed in the ADC data registers is controlled by these modes of operation. Reset returns right-justified mode. Table 15-3. ADC Mode Select
MODE1 0 0 1 1 MODE0 0 1 0 1 Justification Mode 8-bit truncated mode Right justified mode Left justified mode Left justified sign data mode
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC)
Data Sheet 245
Analog-to-Digital Converter (ADC)
15.8.3 ADC Data Register 0 (ADRH0 and ADRL0) The ADC data register 0 consist of a pair of 8-bit registers: high byte (ADRH0), and low byte (ADRL0). This pair form a 16-bit register to store the 10-bit ADC result for the selected ADC result justification mode. In 8-bit truncated mode, the ADRL0 holds the eight most significant bits (MSBs) of the 10-bit result. The ADRL0 is updated each time an ADC conversion completes. In 8-bit truncated mode, ADRL0 contains no interlocking with ADRH0. (See Figure 15-5 . ADRH0 and ADRL0 in 8Bit Truncated Mode.)
Addr. Register Name Bit 7 0 R 0 AD9 R 0 6 0 R 0 AD8 R 0 5 0 R 0 AD7 R 0 4 0 R 0 AD6 R 0 3 0 R 0 AD5 R 0 2 0 R 0 AD4 R 0 1 0 R 0 AD3 R 0 Bit 0 0 R 0 AD2 R 0
Read: ADC Data Register High 0 $0059 Write: (ADRH0) Reset: Read: ADC Data Register Low 0 $005A Write: (ADRL0) Reset:
Figure 15-5. ADRH0 and ADRL0 in 8-Bit Truncated Mode In right justified mode the ADRH0 holds the two MSBs, and the ADRL0 holds the eight least significant bits (LSBs), of the 10-bit result. ADRH0 and ADRL0 are updated each time a single channel ADC conversion completes. Reading ADRH0 latches the contents of ADRL0. Until ADRL0 is read all subsequent ADC results will be lost. (See Figure 15-6 . ADRH0 and ADRL0 in Right Justified Mode.)
Addr. Register Name Bit 7 0 R 0 AD7 R 0 6 0 R 0 AD6 R 0 5 0 R 0 AD5 R 0 4 0 R 0 AD4 R 0 3 0 R 0 AD3 R 0 2 0 R 0 AD2 R 0 1 AD9 R 0 AD1 R 0 Bit 0 AD8 R 0 AD0 R 0
Read: ADC Data Register High 0 $0059 Write: (ADRH0) Reset: Read: ADC Data Register Low 0 $005A Write: (ADRL0) Reset:
Figure 15-6. ADRH0 and ADRL0 in Right Justified Mode
Data Sheet 246
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor
Analog-to-Digital Converter (ADC) I/O Registers
In left justified mode the ADRH0 holds the eight most significant bits (MSBs), and the ADRL0 holds the two least significant bits (LSBs), of the 10-bit result. The ADRH0 and ADRL0 are updated each time a single channel ADC conversion completes. Reading ADRH0 latches the contents of ADRL0. Until ADRL0 is read all subsequent ADC results will be lost. (See Figure 15-7 . ADRH0 and ADRL0 in Left Justified Mode.)
Addr. Register Name Bit 7 AD9 R 0 AD1 R 0 6 AD8 R 0 AD0 R 0 5 AD7 R 0 0 R 0 4 AD6 R 0 0 R 0 3 AD5 R 0 0 R 0 2 AD4 R 0 0 R 0 1 AD3 R 0 0 R 0 Bit 0 AD2 R 0 0 R 0
Read: ADC Data Register High 0 $0059 Write: (ADRH0) Reset: Read: ADC Data Register Low 0 Write: $005A (ADRL0) Reset:
Figure 15-7. ADRH0 and ADRL0 in Left Justified Mode In left justified sign mode the ADRH0 holds the eight MSBs with the MSB complemented, and the ADRL0 holds the two least significant bits (LSBs), of the 10-bit result. The ADRH0 and ADRL0 are updated each time a single channel ADC conversion completes. Reading ADRH0 latches the contents of ADRL0. Until ADRL0 is read all subsequent ADC results will be lost. (See Figure 15-8 . ADRH0 and ADRL0 in Left Justified Sign Data Mode.)
Addr. Register Name Bit 7 AD9 R 0 AD1 R 0 6 AD8 R 0 AD0 R 0 5 AD7 R 0 0 R 0 4 AD6 R 0 0 R 0 3 AD5 R 0 0 R 0 2 AD4 R 0 0 R 0 1 AD3 R 0 0 R 0 Bit 0 AD2 R 0 0 R 0
Read: ADC Data Register High 0 $0059 Write: (ADRH0) Reset: Read: ADC Data Register Low 0 $005A Write: (ADRL0) Reset:
Figure 15-8. ADRH0 and ADRL0 in Left Justified Sign Data Mode
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC)
Data Sheet 247
Analog-to-Digital Converter (ADC)
15.8.4 ADC Auto-Scan Mode Data Registers (ADRL1-ADRL3) The ADC data registers 1 to 3 (ADRL1-ADRL3), are 8-bit registers for conversion results in 8-bit truncated mode, for channels ATD1 to ATD3, when the ADC is operating in auto-scan mode (MODE[1:0] = 00).
Address: ADRL1, $005B; ADRL2, $005C; and ADRL3, $005D Read: Write: Reset: AD9 R 0 R AD8 R 0 = Reserved AD7 R 0 AD6 R 0 AD5 R 0 AD4 R 0 AD3 R 0 AD2 R 0
Figure 15-9. ADC Data Register Low 1 to 3 (ADRL1-ADRL3) 15.8.5 ADC Auto-Scan Control Register (ADASCR) The ADC auto-scan control register (ADASCR) enables and controls the ADC auto-scan function.
Address: Read: Write: Reset: 0 0 0 0 0 R 0 = Reserved 0 0 $005E 0 0 0 0 0 AUTO1 AUTO0 ASCAN
= Unimplemented
Figure 15-10. ADC Scan Control Register (ADASCR) AUTO[1:0] -- Auto-scan Mode Channel Select Bits AUTO1 and AUTO0 form a 2-bit field which is used to define the number of auto-scan channels used when in auto-scan mode. Reset clears these bits. Table 15-4. Auto-scan Mode Channel Select
AUTO1 0 0 1 1 Data Sheet 248 AUTO0 0 1 0 1 Auto-Scan Channels ATD0 only ATD0 to ATD1 ATD0 to ATD2 ATD0 to ATD3 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor
Analog-to-Digital Converter (ADC) I/O Registers
ASCAN -- Auto-scan Mode Enable Bit This bit enable/disable the Auto-scan mode. Reset clears this bit. 1 = Auto-scan mode is enabled 0 = Auto-scan mode is disabled Auto-scan mode should not be enabled when ADC continuous conversion is enabled; i.e. when ADCO=1.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Analog-to-Digital Converter (ADC)
Data Sheet 249
Analog-to-Digital Converter (ADC)
Data Sheet 250
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Analog-to-Digital Converter (ADC) Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 16. Serial Communications Interface (SCI)
16.1 Contents
16.2 16.3 16.4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
16.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254 16.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 16.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 16.5.2.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 16.5.2.2 Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 259 16.5.2.3 Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 16.5.2.4 Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 16.5.2.5 Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . . 261 16.5.2.6 Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .261 16.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 16.5.3.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 16.5.3.2 Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 16.5.3.3 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 16.5.3.4 Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 16.5.3.5 Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . .266 16.5.3.6 Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 16.5.3.7 Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 16.5.3.8 Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271 16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271 16.7 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .272
16.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 16.8.1 TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 251
Serial Communications Interface (SCI)
16.8.2 RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
16.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 16.9.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 16.9.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 16.9.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 16.9.4 SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 16.9.5 SCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 16.9.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 16.9.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . .288
16.2 Introduction
This section describes the serial communications interface (SCI) module, which allows high-speed asynchronous communications with peripheral devices and other MCUs.
NOTE: NOTE:
When the SCI is enabled, the TxD pin is an open-drain output and requires a pullup resistor to be connected for proper SCI operation. References to DMA (direct-memory access) and associated functions are only valid if the MCU has a DMA module. This MCU does not have the DMA function. Any DMA-related register bits should be left in their reset state for normal MCU operation.
16.3 Features
Features of the SCI module include the following: * * * * * * *
Data Sheet 252
Full-duplex operation Standard mark/space non-return-to-zero (NRZ) format 32 programmable baud rates Programmable 8-bit or 9-bit character length Separately enabled transmitter and receiver Separate receiver and transmitter CPU interrupt requests Programmable transmitter output polarity
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
Serial Communications Interface (SCI) Features
*
Two receiver wakeup methods: - Idle line wakeup - Address mark wakeup
*
Interrupt-driven operation with eight interrupt flags: - Transmitter empty - Transmission complete - Receiver full - Idle receiver input - Receiver overrun - Noise error - Framing error - Parity error
* * * *
Receiver framing error detection Hardware parity checking 1/16 bit-time noise detection Configuration register bit, SCIBDSRC, to allow selection of baud rate clock source
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI)
Data Sheet 253
Serial Communications Interface (SCI) 16.4 Pin Name Conventions
The generic names of the SCI I/O pins are: * * RxD (receive data) TxD (transmit data)
SCI I/O (input/output) lines are implemented by sharing parallel I/O port pins. The full name of an SCI input or output reflects the name of the shared port pin. Table 16-1 shows the full names and the generic names of the SCI I/O pins. The generic pin names appear in the text of this section. Table 16-1. Pin Name Conventions
Generic Pin Names: Full Pin Names: RxD PTB3/SCL1/RxD TxD PTB2/SDA1/TxD
NOTE:
When the SCI is enabled, the TxD pin is an open-drain output and requires a pullup resistor to be connected for proper SCI operation.
16.5 Functional Description
Figure 16-1 shows the structure of the SCI module. The SCI allows fullduplex, asynchronous, NRZ serial communication among the MCU and remote devices, including other MCUs. The transmitter and receiver of the SCI operate independently, although they use the same baud rate generator. During normal operation, the CPU monitors the status of the SCI, writes the data to be transmitted, and processes received data. The baud rate clock source for the SCI can be selected via the configuration bit, SCIBDSRC, of the CONFIG2 register ($001D). Source selection values are shown in Figure 16-1.
Data Sheet 254
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
Serial Communications Interface (SCI) Functional Description
INTERNAL BUS
SCI DATA REGISTER TRANSMITTER INTERRUPT CONTROL RECEIVER INTERRUPT CONTROL RECEIVE SHIFT REGISTER DMA INTERRUPT CONTROL ERROR INTERRUPT CONTROL
SCI DATA REGISTER TRANSMIT SHIFT REGISTER
RxD
TxD
TXINV SCTIE TCIE SCRIE ILIE TE RE RWU SBK SCTE TC SCRF IDLE OR NF FE PE LOOPS LOOPS WAKEUP CONTROL SCIBDSRC FROM CONFIG RECEIVE CONTROL FLAG CONTROL M WAKE ILTY SL CGMXCLK A X B IT12 SL = 0 => X = A SL = 1 => X = B /4 PRESCALER BAUD DIVIDER PEN PTY DATA SELECTION CONTROL ENSCI TRANSMIT CONTROL ORIE NEIE FEIE PEIE
R8 T8
DMARE DMATE
ENSCI
BKF RPF
CGMXCLK is from CGM module IT12 = fBUS
/ 16
Figure 16-1. SCI Module Block Diagram
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI)
Data Sheet 255
Serial Communications Interface (SCI)
Addr.
Register Name Read:
Bit 7
6 ENSCI 0 TCIE 0 T8
5 TXINV 0 SCRIE 0 DMARE 0 SCRF
4 M 0 ILIE 0 DMATE 0 IDLE
3 WAKE 0 TE 0 ORIE 0 OR
2 ILTY 0 RE 0 NEIE 0 NF
1 PEN 0 RWU 0 FEIE 0 FE
Bit 0 PTY 0 SBK 0 PEIE 0 PE
$0013
LOOPS SCI Control Register 1 Write: (SCC1) Reset: 0 Read: SCI Control Register 2 Write: (SCC2) Reset: Read: SCI Control Register 3 Write: (SCC3) Reset: Read: SCI Status Register 1 Write: (SCS1) Reset: Read: SCI Status Register 2 Write: (SCS2) Reset: Read: SCI Data Register Write: (SCDR) Reset: Read: SCI Baud Rate Register Write: (SCBR) Reset: SCTIE 0 R8
$0014
$0015
U SCTE
U TC
$0016
1
1
0
0
0
0
0 BKF
0 RPF
$0017
0 R7 T7
0 R6 T6
0 R5 T5
0 R4 T4
0 R3 T3
0 R2 T2
0 R1 T1
0 R0 T0
$0018
Unaffected by reset 0 0 SCP1 0 0 0 SCP0 0 R = Reserved R 0 SCR2 0 U = Unaffected SCR1 0 SCR0 0
$0019
= Unimplemented
Figure 16-2. SCI I/O Register Summary
Data Sheet 256
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
Serial Communications Interface (SCI) Functional Description
16.5.1 Data Format The SCI uses the standard non-return-to-zero mark/space data format illustrated in Figure 16-3.
8-BIT DATA FORMAT BIT M IN SCC1 CLEAR START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6
PARITY BIT BIT 7 STOP BIT
NEXT START BIT
9-BIT DATA FORMAT BIT M IN SCC1 SET START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7
PARITY BIT BIT 8 STOP BIT
NEXT START BIT
Figure 16-3. SCI Data Formats
16.5.2 Transmitter Figure 16-4 shows the structure of the SCI transmitter. The baud rate clock source for the SCI can be selected via the configuration bit, SCIBDSRC. Source selection values are shown in Figure 16-4.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI)
Data Sheet 257
Serial Communications Interface (SCI)
SCIBDSRC FROM CONFIG2
SL A CGMXCLK X B IT12 SL = 0 => X = A SL = 1 => X = B
INTERNAL BUS
/4
PRESCALER
BAUD DIVIDER
/ 16
SCI DATA REGISTER
SCP0 SCR1 SCR2 SCR0 TRANSMITTER CPU INTERRUPT REQUEST TRANSMITTER DMA SERVICE REQUEST TXINV
H
8 MSB
7
6
5
4
3
2
1
0
START L
SCP1 STOP
11-BIT TRANSMIT SHIFT REGISTER
TxD
M SHIFT ENABLE PEN PTY PARITY GENERATION LOAD FROM SCDR
PREAMBLE ALL 1s
T8 DMATE DMATE SCTIE SCTE DMATE SCTE SCTIE TC TCIE
TRANSMITTER CONTROL LOGIC
SCTE
LOOPS SCTIE TC TCIE ENSCI TE
Figure 16-4. SCI Transmitter
Data Sheet 258
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
BREAK ALL 0s SBK
Serial Communications Interface (SCI) Functional Description
16.5.2.1 Character Length The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3) is the ninth bit (bit 8). 16.5.2.2 Character Transmission During an SCI transmission, the transmit shift register shifts a character out to the TxD pin. The SCI data register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register. To initiate an SCI transmission: 1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI) in SCI control register 1 (SCC1). 2. Enable the transmitter by writing a logic 1 to the transmitter enable bit (TE) in SCI control register 2 (SCC2). 3. Clear the SCI transmitter empty bit by first reading SCI status register 1 (SCS1) and then writing to the SCDR. 4. Repeat step 3 for each subsequent transmission. At the start of a transmission, transmitter control logic automatically loads the transmit shift register with a preamble of logic 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit shift register. A logic 0 start bit automatically goes into the least significant bit position of the transmit shift register. A logic 1 stop bit goes into the most significant bit position. The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data bus. If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a transmitter CPU interrupt request. When the transmit shift register is not transmitting a character, the TxD pin goes to the idle condition, logic 1. If at any time software clears the ENSCI bit in SCI control register 1 (SCC1), the transmitter and receiver relinquish control of the port pin.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 259
Serial Communications Interface (SCI)
16.5.2.3 Break Characters Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character. A break character contains all logic 0s and has no start, stop, or parity bit. Break character length depends on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic continuously loads break characters into the transmit shift register. After software clears the SBK bit, the shift register finishes transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the end of a break character guarantees the recognition of the start bit of the next character. The SCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a logic 0 where the stop bit should be. Receiving a break character has these effects on SCI registers: * * * * * * Sets the framing error bit (FE) in SCS1 Sets the SCI receiver full bit (SCRF) in SCS1 Clears the SCI data register (SCDR) Clears the R8 bit in SCC3 Sets the break flag bit (BKF) in SCS2 May set the overrun (OR), noise flag (NF), parity error (PE), or reception in progress flag (RPF) bits
16.5.2.4 Idle Characters An idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends on the M bit in SCC1. The preamble is a synchronizing idle character that begins every transmission. If the TE bit is cleared during a transmission, the TxD pin becomes idle after completion of the transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle character to be sent after the character currently being transmitted.
Data Sheet 260
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
Serial Communications Interface (SCI) Functional Description
NOTE:
When queueing an idle character, return the TE bit to logic 1 before the stop bit of the current character shifts out to the TxD pin. Setting TE after the stop bit appears on TxD causes data previously written to the SCDR to be lost. Toggle the TE bit for a queued idle character when the SCTE bit becomes set and just before writing the next byte to the SCDR.
16.5.2.5 Inversion of Transmitted Output The transmit inversion bit (TXINV) in SCI control register 1 (SCC1) reverses the polarity of transmitted data. All transmitted values, including idle, break, start, and stop bits, are inverted when TXINV is at logic 1. (See 16.9.1 SCI Control Register 1.) 16.5.2.6 Transmitter Interrupts These conditions can generate CPU interrupt requests from the SCI transmitter: * SCI transmitter empty (SCTE) -- The SCTE bit in SCS1 indicates that the SCDR has transferred a character to the transmit shift register. SCTE can generate a transmitter CPU interrupt request. Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate transmitter CPU interrupt requests. Transmission complete (TC) -- The TC bit in SCS1 indicates that the transmit shift register and the SCDR are empty and that no break or idle character has been generated. The transmission complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter CPU interrupt requests.
*
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI)
Data Sheet 261
Serial Communications Interface (SCI)
16.5.3 Receiver Figure 16-5 shows the structure of the SCI receiver. 16.5.3.1 Character Length The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2) is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7). 16.5.3.2 Character Reception During an SCI reception, the receive shift register shifts characters in from the RxD pin. The SCI data register (SCDR) is the read-only buffer between the internal data bus and the receive shift register. After a complete character shifts into the receive shift register, the data portion of the character transfers to the SCDR. The SCI receiver full bit, SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the received byte can be read. If the SCI receive interrupt enable bit, SCRIE, in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt request.
Data Sheet 262
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
Serial Communications Interface (SCI) Functional Description
INTERNAL BUS
SCIBDSRC FROM CONFIG2
SCR1 SCP1 SCP0 SCR2 SCR0 START 0 L RWU PRESCALER BAUD DIVIDER / 16 DATA RECOVERY ALL 0s ALL 1s MSB SCI DATA REGISTER
SL CGMXCLK A X B IT12 SL = 0 => X = A SL = 1 => X = B
STOP
/4
11-BIT RECEIVE SHIFT REGISTER 8 7 6 5 4 3 2 1
RxD
H
BKF RPF ERROR CPU INTERRUPT REQUEST DMA SERVICE REQUEST
CPU INTERRUPT REQUEST
M WAKE ILTY PEN PTY WAKEUP LOGIC PARITY CHECKING IDLE ILIE DMARE SCRF SCRIE DMARE SCRF SCRIE DMARE OR ORIE NF NEIE FE FEIE PE PEIE
SCRF IDLE
R8
ILIE
SCRIE
DMARE OR ORIE NF NEIE FE FEIE PE PEIE
Figure 16-5. SCI Receiver Block Diagram
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI)
Data Sheet 263
Serial Communications Interface (SCI)
16.5.3.3 Data Sampling The receiver samples the RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at the following times (see Figure 16-6): * * After every start bit After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and RT10 samples returns a valid logic 0)
To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.
START BIT RxD
LSB
SAMPLES
START BIT QUALIFICATION
START BIT VERIFICATION
DATA SAMPLING
RT CLOCK RT10 RT11 RT12 RT13 RT14 RT15 RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT2 RT3 RT4 RT5 RT6 RT7 RT8 RT9 RT1 RT2 RT3 RT4 RT CLOCK STATE RT CLOCK RESET RT16
Figure 16-6. Receiver Data Sampling
Data Sheet 264
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
Serial Communications Interface (SCI) Functional Description
To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7. Table 16-2 summarizes the results of the start bit verification samples. Table 16-2. Start Bit Verification
RT3, RT5, and RT7 Samples 000 001 010 011 100 101 110 111 Start Bit Verification Yes Yes Yes No Yes No No No Noise Flag 0 1 1 0 1 0 0 0
Start bit verification is not successful if any two of the three verification samples are logic 1s. If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins. To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 16-3 summarizes the results of the data bit samples. Table 16-3. Data Bit Recovery
RT8, RT9, and RT10 Samples 000 001 010 011 100 101 110 111 Data Bit Determination 0 0 0 1 0 1 1 1 Noise Flag 0 1 1 1 1 1 1 0
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI)
Data Sheet 265
Serial Communications Interface (SCI)
NOTE:
The RT8, RT9, and RT10 samples do not affect start bit verification. If any or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a successful start bit verification, the noise flag (NF) is set and the receiver assumes that the bit is a start bit. To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 16-4 summarizes the results of the stop bit samples. Table 16-4. Stop Bit Recovery
RT8, RT9, and RT10 Samples 000 001 010 011 100 101 110 111 Framing Error Flag 1 1 1 0 1 0 0 0 Noise Flag 0 1 1 1 1 1 1 0
16.5.3.4 Framing Errors If the data recovery logic does not detect a logic 1 where the stop bit should be in an incoming character, it sets the framing error bit, FE, in SCS1. A break character also sets the FE bit because a break character has no stop bit. The FE bit is set at the same time that the SCRF bit is set. 16.5.3.5 Baud Rate Tolerance A transmitting device may be operating at a baud rate below or above the receiver baud rate. Accumulated bit time misalignment can cause one of the three stop bit data samples to fall outside the actual stop bit. Then a noise error occurs. If more than one of the samples is outside the stop bit, a framing error occurs. In most applications, the baud rate
Data Sheet 266
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
Serial Communications Interface (SCI) Functional Description
tolerance is much more than the degree of misalignment that is likely to occur. As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge within the character. Resynchronization within characters corrects misalignments between transmitter bit times and receiver bit times. Slow Data Tolerance Figure 16-7 shows how much a slow received character can be misaligned without causing a noise error or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data samples at RT8, RT9, and RT10.
MSB
STOP
RT10
RT11
RT12
RT13
RT14
RT15
DATA SAMPLES
Figure 16-7. Slow Data For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times x 16 RT cycles + 10 RT cycles = 154 RT cycles. With the misaligned character shown in Figure 16-7, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 9 bit times x 16 RT cycles + 3 RT cycles = 147 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit character with no errors is 154 - 147 x 100 = 4.54% ------------------------154 For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times x 16 RT cycles + 10 RT cycles = 170 RT cycles.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI)
Data Sheet 267
RT16
RT1
RT2
RT3
RT4
RT5
RT6
RT7
RT8
RT9
RECEIVER RT CLOCK
Serial Communications Interface (SCI)
With the misaligned character shown in Figure 16-7, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 10 bit times x 16 RT cycles + 3 RT cycles = 163 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit character with no errors is 170 - 163 x 100 = 4.12% ------------------------170 Fast Data Tolerance Figure 16-8 shows how much a fast received character can be misaligned without causing a noise error or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit data samples at RT8, RT9, and RT10.
STOP
IDLE OR NEXT CHARACTER
RT10
RT11
RT12
RT13
RT14
RT15
DATA SAMPLES
Figure 16-8. Fast Data For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times x 16 RT cycles + 10 RT cycles = 154 RT cycles. With the misaligned character shown in Figure 16-8, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 10 bit times x 16 RT cycles = 160 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit character with no errors is * 154 - 160 x 100 = 3.90% ------------------------154
Data Sheet 268
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
RT16
RT1
RT2
RT3
RT4
RT5
RT6
RT7
RT8
RT9
RECEIVER RT CLOCK
Serial Communications Interface (SCI) Functional Description
For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times x 16 RT cycles + 10 RT cycles = 170 RT cycles. With the misaligned character shown in Figure 16-8, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 11 bit times x 16 RT cycles = 176 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit character with no errors is 170 - 176 x 100 = 3.53% ------------------------170
16.5.3.6 Receiver Wakeup So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems, the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the receiver into a standby state during which receiver interrupts are disabled. Depending on the state of the WAKE bit in SCC1, either of two conditions on the RxD pin can bring the receiver out of the standby state: * Address mark -- An address mark is a logic 1 in the most significant bit position of a received character. When the WAKE bit is set, an address mark wakes the receiver from the standby state by clearing the RWU bit. The address mark also sets the SCI receiver full bit, SCRF. Software can then compare the character containing the address mark to the user-defined address of the receiver. If they are the same, the receiver remains awake and processes the characters that follow. If they are not the same, software can set the RWU bit and put the receiver back into the standby state. Idle input line condition -- When the WAKE bit is clear, an idle character on the RxD pin wakes the receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver does not set the receiver idle bit, IDLE, or the SCI receiver
*
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI)
Data Sheet 269
Serial Communications Interface (SCI)
full bit, SCRF. The idle line type bit, ILTY, determines whether the receiver begins counting logic 1s as idle character bits after the start bit or after the stop bit.
NOTE:
With the WAKE bit clear, setting the RWU bit after the RxD pin has been idle may cause the receiver to wake up immediately.
16.5.3.7 Receiver Interrupts The following sources can generate CPU interrupt requests from the SCI receiver: * SCI receiver full (SCRF) -- The SCRF bit in SCS1 indicates that the receive shift register has transferred a character to the SCDR. SCRF can generate a receiver CPU interrupt request. Setting the SCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver CPU interrupts. Idle input (IDLE) -- The IDLE bit in SCS1 indicates that 10 or 11 consecutive logic 1s shifted in from the RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate CPU interrupt requests.
*
16.5.3.8 Error Interrupts The following receiver error flags in SCS1 can generate CPU interrupt requests: * Receiver overrun (OR) -- The OR bit indicates that the receive shift register shifted in a new character before the previous character was read from the SCDR. The previous character remains in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI error CPU interrupt requests. Noise flag (NF) -- The NF bit is set when the SCI detects noise on incoming data or break characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3 enables NF to generate SCI error CPU interrupt requests.
*
Data Sheet 270
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
Serial Communications Interface (SCI) Low-Power Modes
*
Framing error (FE) -- The FE bit in SCS1 is set when a logic 0 occurs where the receiver expects a stop bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI error CPU interrupt requests. Parity error (PE) -- The PE bit in SCS1 is set when the SCI detects a parity error in incoming data. The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU interrupt requests.
*
16.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 16.6.1 Wait Mode The SCI module remains active after the execution of a WAIT instruction. In wait mode, the SCI module registers are not accessible by the CPU. Any enabled CPU interrupt request from the SCI module can bring the MCU out of wait mode. If SCI module functions are not required during wait mode, reduce power consumption by disabling the module before executing the WAIT instruction. Refer to 9.7 Low-Power Modes for information on exiting wait mode. 16.6.2 Stop Mode The SCI module is inactive after the execution of a STOP instruction. The STOP instruction does not affect SCI register states. SCI module operation resumes after an external interrupt. Because the internal clock is inactive during stop mode, entering stop mode during an SCI transmission or reception results in invalid data. Refer to 9.7 Low-Power Modes for information on exiting stop mode.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI)
Data Sheet 271
Serial Communications Interface (SCI) 16.7 SCI During Break Module Interrupts
The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit.
16.8 I/O Signals
Port B shares two of its pins with the SCI module. The two SCI I/O pins are: * * PTB2/SDA1/TxD -- Transmit data PTB3/SCL1/RxD -- Receive data
16.8.1 TxD (Transmit Data) When the SCI is enabled (ENSCI=1), the PTB2/SDA1/TxD pin becomes the serial data output, TxD, from the SCI transmitter regardless of the state of the DDRB2 bit in data direction register B (DDRB). The TxD pin is an open-drain output and requires a pullup resistor to be connected for proper SCI operation.
NOTE:
The PTB2/SDA1/TxD pin is an open-drain pin when configured as an output. Therefore, when configured as a general purpose output pin (PTB2), a pullup resistor must be connected to this pin.
Data Sheet 272
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
Serial Communications Interface (SCI) I/O Registers
16.8.2 RxD (Receive Data) When the SCI is enabled (ENSCI=1), the PTB3/SCL1/RxD pin becomes the serial data input, RxD, to the SCI receiver regardless of the state of the DDRB3 bit in data direction register B (DDRB).
NOTE:
The PTB3/SCL1/RxD pin is an open-drain pin when configured as an output. Therefore, when configured as a general purpose output pin (PTB3), a pullup resistor must be connected to this pin.
16.9 I/O Registers
These I/O registers control and monitor SCI operation: * * * * * * * SCI control register 1 (SCC1) SCI control register 2 (SCC2) SCI control register 3 (SCC3) SCI status register 1 (SCS1) SCI status register 2 (SCS2) SCI data register (SCDR) SCI baud rate register (SCBR)
16.9.1 SCI Control Register 1 SCI control register 1: * * * * * * * * Enables loop mode operation Enables the SCI Controls output polarity Controls character length Controls SCI wakeup method Controls idle character detection Enables parity function Controls parity type
Data Sheet 273
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI)
Serial Communications Interface (SCI)
Address:
$0013 Bit 7 6 ENSCI 0 5 TXINV 0 4 M 0 3 WAKE 0 2 ILTY 0 1 PEN 0 Bit 0 PTY 0
Read: LOOPS Write: Reset: 0
Figure 16-9. SCI Control Register 1 (SCC1) LOOPS -- Loop Mode Select Bit This read/write bit enables loop mode operation. In loop mode the RxD pin is disconnected from the SCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver must be enabled to use loop mode. Reset clears the LOOPS bit. 1 = Loop mode enabled 0 = Normal operation enabled ENSCI -- Enable SCI Bit This read/write bit enables the SCI and the SCI baud rate generator. Clearing ENSCI sets the SCTE and TC bits in SCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit. 1 = SCI enabled 0 = SCI disabled TXINV -- Transmit Inversion Bit This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit. 1 = Transmitter output inverted 0 = Transmitter output not inverted
NOTE:
Setting the TXINV bit inverts all transmitted values, including idle, break, start, and stop bits.
Data Sheet 274
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
Serial Communications Interface (SCI) I/O Registers
M -- Mode (Character Length) Bit This read/write bit determines whether SCI characters are eight or nine bits long. (See Table 16-5.) The ninth bit can serve as an extra stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears the M bit. 1 = 9-bit SCI characters 0 = 8-bit SCI characters WAKE -- Wakeup Condition Bit This read/write bit determines which condition wakes up the SCI: a logic 1 (address mark) in the most significant bit position of a received character or an idle condition on the RxD pin. Reset clears the WAKE bit. 1 = Address mark wakeup 0 = Idle line wakeup ILTY -- Idle Line Type Bit This read/write bit determines when the SCI starts counting logic 1s as idle character bits. The counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string of logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after the stop bit avoids false idle character recognition, but requires properly synchronized transmissions. Reset clears the ILTY bit. 1 = Idle character bit count begins after stop bit 0 = Idle character bit count begins after start bit PEN -- Parity Enable Bit This read/write bit enables the SCI parity function. (See Table 16-5.) When enabled, the parity function inserts a parity bit in the most significant bit position. (See Figure 16-3.) Reset clears the PEN bit. 1 = Parity function enabled 0 = Parity function disabled
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI)
Data Sheet 275
Serial Communications Interface (SCI)
PTY -- Parity Bit This read/write bit determines whether the SCI generates and checks for odd parity or even parity. (See Table 16-5.) Reset clears the PTY bit. 1 = Odd parity 0 = Even parity
NOTE:
Changing the PTY bit in the middle of a transmission or reception can generate a parity error. Table 16-5. Character Format Selection
Control Bits M 0 1 0 0 1 1 PEN and PTY 0X 0X 10 11 10 11 Start Bits 1 1 1 1 1 1 Data Bits 8 9 7 7 8 8 Character Format Parity None None Even Odd Even Odd Stop Bits 1 1 1 1 1 1 Character Length 10 bits 11 bits 10 bits 10 bits 11 bits 11 bits
16.9.2 SCI Control Register 2 SCI control register 2: * Enables the following CPU interrupt requests: - Enables the SCTE bit to generate transmitter CPU interrupt requests - Enables the TC bit to generate transmitter CPU interrupt requests - Enables the SCRF bit to generate receiver CPU interrupt requests - Enables the IDLE bit to generate receiver CPU interrupt requests
Data Sheet 276
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
Serial Communications Interface (SCI) I/O Registers
* * * *
Address:
Enables the transmitter Enables the receiver Enables SCI wakeup Transmits SCI break characters
$0014 Bit 7 6 TCIE 0 5 SCRIE 0 4 ILIE 0 3 TE 0 2 RE 0 1 RWU 0 Bit 0 SBK 0
Read: SCTIE Write: Reset: 0
Figure 16-10. SCI Control Register 2 (SCC2) SCTIE -- SCI Transmit Interrupt Enable Bit This read/write bit enables the SCTE bit to generate SCI transmitter CPU interrupt requests. Reset clears the SCTIE bit. 1 = SCTE enabled to generate CPU interrupt 0 = SCTE not enabled to generate CPU interrupt TCIE -- Transmission Complete Interrupt Enable Bit This read/write bit enables the TC bit to generate SCI transmitter CPU interrupt requests. Reset clears the TCIE bit. 1 = TC enabled to generate CPU interrupt requests 0 = TC not enabled to generate CPU interrupt requests SCRIE -- SCI Receive Interrupt Enable Bit This read/write bit enables the SCRF bit to generate SCI receiver CPU interrupt requests. Reset clears the SCRIE bit. 1 = SCRF enabled to generate CPU interrupt 0 = SCRF not enabled to generate CPU interrupt ILIE -- Idle Line Interrupt Enable Bit This read/write bit enables the IDLE bit to generate SCI receiver CPU interrupt requests. Reset clears the ILIE bit. 1 = IDLE enabled to generate CPU interrupt requests 0 = IDLE not enabled to generate CPU interrupt requests
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 277
Serial Communications Interface (SCI)
TE -- Transmitter Enable Bit Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any transmission in progress before the TxD returns to the idle condition (logic 1). Clearing and then setting TE during a transmission queues an idle character to be sent after the character currently being transmitted. Reset clears the TE bit. 1 = Transmitter enabled 0 = Transmitter disabled
NOTE:
Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1. RE -- Receiver Enable Bit Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit. 1 = Receiver enabled 0 = Receiver disabled
NOTE:
Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1. RWU -- Receiver Wakeup Bit This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled. The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out of the standby state and clears the RWU bit. Reset clears the RWU bit. 1 = Standby state 0 = Normal operation
Data Sheet 278
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
Serial Communications Interface (SCI) I/O Registers
SBK -- Send Break Bit Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic 1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter continuously transmits break characters with no logic 1s between them. Reset clears the SBK bit. 1 = Transmit break characters 0 = No break characters being transmitted
NOTE:
Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling SBK before the preamble begins causes the SCI to send a break character instead of a preamble.
16.9.3 SCI Control Register 3 SCI control register 3: * * Stores the ninth SCI data bit received and the ninth SCI data bit to be transmitted Enables these interrupts: - Receiver overrun interrupts - Noise error interrupts - Framing error interrupts *
Address:
Parity error interrupts
$0015 Bit 7 6 T8 5 DMARE 0 4 DMATE 0 3 ORIE 0 U = Unaffected 2 NEIE 0 1 FEIE 0 Bit 0 PEIE 0
Read: Write: Reset:
R8
U
U
= Unimplemented
Figure 16-11. SCI Control Register 3 (SCC3)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI)
Data Sheet 279
Serial Communications Interface (SCI)
R8 -- Received Bit 8 When the SCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received character. R8 is received at the same time that the SCDR receives the other 8 bits. When the SCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7). Reset has no effect on the R8 bit. T8 -- Transmitted Bit 8 When the SCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into the transmit shift register. Reset has no effect on the T8 bit. DMARE -- DMA Receive Enable Bit
CAUTION:
The DMA module is not included on this MCU. Writing a logic 1 to DMARE or DMATE may adversely affect MCU performance. 1 = DMA not enabled to service SCI receiver DMA service requests generated by the SCRF bit (SCI receiver CPU interrupt requests enabled) 0 = DMA not enabled to service SCI receiver DMA service requests generated by the SCRF bit (SCI receiver CPU interrupt requests enabled) DMATE -- DMA Transfer Enable Bit
CAUTION:
The DMA module is not included on this MCU. Writing a logic 1 to DMARE or DMATE may adversely affect MCU performance. 1 = SCTE DMA service requests enabled; SCTE CPU interrupt requests disabled 0 = SCTE DMA service requests disabled; SCTE CPU interrupt requests enabled
Data Sheet 280
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
Serial Communications Interface (SCI) I/O Registers
ORIE -- Receiver Overrun Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the receiver overrun bit, OR. 1 = SCI error CPU interrupt requests from OR bit enabled 0 = SCI error CPU interrupt requests from OR bit disabled NEIE -- Receiver Noise Error Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the noise error bit, NE. Reset clears NEIE. 1 = SCI error CPU interrupt requests from NE bit enabled 0 = SCI error CPU interrupt requests from NE bit disabled FEIE -- Receiver Framing Error Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the framing error bit, FE. Reset clears FEIE. 1 = SCI error CPU interrupt requests from FE bit enabled 0 = SCI error CPU interrupt requests from FE bit disabled PEIE -- Receiver Parity Error Interrupt Enable Bit This read/write bit enables SCI receiver CPU interrupt requests generated by the parity error bit, PE. (See 16.9.4 SCI Status Register 1.) Reset clears PEIE. 1 = SCI error CPU interrupt requests from PE bit enabled 0 = SCI error CPU interrupt requests from PE bit disabled
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI)
Data Sheet 281
Serial Communications Interface (SCI)
16.9.4 SCI Status Register 1 SCI status register 1 (SCS1) contains flags to signal these conditions: * * * * * * * *
Address:
Transfer of SCDR data to transmit shift register complete Transmission complete Transfer of receive shift register data to SCDR complete Receiver input idle Receiver overrun Noisy data Framing error Parity error
$0016 Bit 7 6 TC 5 SCRF 4 IDLE 3 OR 2 NF 1 FE Bit 0 PE
Read: Write: Reset:
SCTE
1
1
0
0
0
0
0
0
= Unimplemented
Figure 16-12. SCI Status Register 1 (SCS1) SCTE -- SCI Transmitter Empty Bit This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register. SCTE can generate an SCI transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set, SCTE generates an SCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit by reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE bit. 1 = SCDR data transferred to transmit shift register 0 = SCDR data not transferred to transmit shift register
Data Sheet 282
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
Serial Communications Interface (SCI) I/O Registers
TC -- Transmission Complete Bit This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being transmitted. TC generates an SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also set. TC is automatically cleared when data, preamble or break is queued and ready to be sent. There may be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the transmission actually starting. Reset sets the TC bit. 1 = No transmission in progress 0 = Transmission in progress SCRF -- SCI Receiver Full Bit This clearable, read-only bit is set when the data in the receive shift register transfers to the SCI data register. SCRF can generate an SCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is set, SCRF generates a CPU interrupt request. In normal operation, clear the SCRF bit by reading SCS1 with SCRF set and then reading the SCDR. Reset clears SCRF. 1 = Received data available in SCDR 0 = Data not available in SCDR IDLE -- Receiver Idle Bit This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear on the receiver input. IDLE generates an SCI error CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit by reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must receive a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after the IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition can set the IDLE bit. Reset clears the IDLE bit. 1 = Receiver input idle 0 = Receiver input active (or idle since the IDLE bit was cleared) OR -- Receiver Overrun Bit This clearable, read-only bit is set when software fails to read the SCDR before the receive shift register receives the next character. The OR bit generates an SCI error CPU interrupt request if the ORIE
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI) Data Sheet 283
Serial Communications Interface (SCI)
bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears the OR bit. 1 = Receive shift register full and SCRF = 1 0 = No receiver overrun Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing sequence. Figure 16-13 shows the normal flag-clearing sequence and an example of an overrun caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next flagclearing sequence reads byte 3 in the SCDR instead of byte 2. In applications that are subject to software latency or in which it is important to know which byte is lost due to an overrun, the flagclearing routine can check the OR bit in a second read of SCS1 after reading the data register. NF -- Receiver Noise Flag Bit This clearable, read-only bit is set when the SCI detects noise on the RxD pin. NF generates an NF CPU interrupt request if the NEIE bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then reading the SCDR. Reset clears the NF bit. 1 = Noise detected 0 = No noise detected FE -- Receiver Framing Error Bit This clearable, read-only bit is set when a logic 0 is accepted as the stop bit. FE generates an SCI error CPU interrupt request if the FEIE bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set and then reading the SCDR. Reset clears the FE bit. 1 = Framing error detected 0 = No framing error detected
Data Sheet 284
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
Serial Communications Interface (SCI) I/O Registers
NORMAL FLAG CLEARING SEQUENCE SCRF = 1 SCRF = 0 SCRF = 1 SCRF = 0 SCRF = 1 SCRF = 0 BYTE 4 READ SCS1 SCRF = 1 OR = 0 READ SCDR BYTE 3 BYTE 4 READ SCS1 SCRF = 1 OR = 1 READ SCDR BYTE 3 SCRF = 0 OR = 0
BYTE 1 READ SCS1 SCRF = 1 OR = 0 READ SCDR BYTE 1
BYTE 2 READ SCS1 SCRF = 1 OR = 0 READ SCDR BYTE 2
BYTE 3
DELAYED FLAG CLEARING SEQUENCE SCRF = 1 OR = 1 SCRF = 1 SCRF = 0 OR = 1 SCRF = 1 OR = 1 BYTE 3
BYTE 1
BYTE 2 READ SCS1 SCRF = 1 OR = 0 READ SCDR BYTE 1
Figure 16-13. Flag Clearing Sequence
PE -- Receiver Parity Error Bit This clearable, read-only bit is set when the SCI detects a parity error in incoming data. PE generates a PE CPU interrupt request if the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with PE set and then reading the SCDR. Reset clears the PE bit. 1 = Parity error detected 0 = No parity error detected
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI)
Data Sheet 285
Serial Communications Interface (SCI)
16.9.5 SCI Status Register 2 SCI status register 2 contains flags to signal the following conditions: * *
Address:
Break character detected Incoming data
$0017 Bit 7 6 5 4 3 2 1 BKF Bit 0 RPF
Read: Write: Reset: 0 0 0 0 0 0
0
0
= Unimplemented
Figure 16-14. SCI Status Register 2 (SCS2) BKF -- Break Flag Bit This clearable, read-only bit is set when the SCI detects a break character on the RxD pin. In SCS1, the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF does not generate a CPU interrupt request. Clear BKF by reading SCS2 with BKF set and then reading the SCDR. Once cleared, BKF can become set again only after logic 1s again appear on the RxD pin followed by another break character. Reset clears the BKF bit. 1 = Break character detected 0 = No break character detected RPF -- Reception in Progress Flag Bit This read-only bit is set when the receiver detects a logic 0 during the RT1 time period of the start bit search. RPF does not generate an interrupt request. RPF is reset after the receiver detects false start bits (usually from noise or a baud rate mismatch) or when the receiver detects an idle character. Polling RPF before disabling the SCI module or entering stop mode can show whether a reception is in progress. 1 = Reception in progress 0 = No reception in progress
Data Sheet 286 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
Serial Communications Interface (SCI) I/O Registers
16.9.6 SCI Data Register The SCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit shift registers. Reset has no effect on data in the SCI data register.
Address: $0018 Bit 7 Read: Write: Reset: R7 T7 6 R6 T6 5 R5 T5 4 R4 T4 3 R3 T3 2 R2 T2 1 R1 T1 Bit 0 R0 T0
Unaffected by reset
Figure 16-15. SCI Data Register (SCDR) R7/T7-R0/T0 -- Receive/Transmit Data Bits Reading the SCI data register (SCDR) accesses the read-only received data bits, R7:R0. Writing to the SCDR writes the data to be transmitted, T7:T0. Reset has no effect on the SCDR.
NOTE:
Do not use read/modify/write instructions on the SCI data register.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI)
Data Sheet 287
Serial Communications Interface (SCI)
16.9.7 SCI Baud Rate Register The baud rate register (SCBR) selects the baud rate for both the receiver and the transmitter.
Address: $0019 Bit 7 Read: Write: Reset: 0 0 0 0 0 R 0 = Reserved 0 0 0 6 0 SCP1 SCP0 R SCR2 SCR1 SCR0 5 4 3 2 1 Bit 0
= Unimplemented
Figure 16-16. SCI Baud Rate Register (SCBR) SCP1 and SCP0 -- SCI Baud Rate Prescaler Bits These read/write bits select the baud rate prescaler divisor as shown in Table 16-6. Reset clears SCP1 and SCP0. Table 16-6. SCI Baud Rate Prescaling
SCP1 and SCP0 00 01 10 11 Prescaler Divisor (PD) 1 3 4 13
SCR2-SCR0 -- SCI Baud Rate Select Bits These read/write bits select the SCI baud rate divisor as shown in Table 16-7. Reset clears SCR2-SCR0.
Data Sheet 288
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
Serial Communications Interface (SCI) I/O Registers
Table 16-7. SCI Baud Rate Selection
SCR2, SCR1, and SCR0 000 001 010 011 100 101 110 111 Baud Rate Divisor (BD) 1 2 4 8 16 32 64 128
Use this formula to calculate the SCI baud rate: SCI clock source baud rate = -------------------------------------------64 x PD x BD where: SCI clock source = fBUS or CGMXCLK (selected by SCIBDSRC bit in CONFIG2 register) PD = prescaler divisor BD = baud rate divisor Table 16-8 shows the SCI baud rates that can be generated with a 4.9152-MHz bus clock when fBUS is selected as SCI clock source.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Serial Communications Interface (SCI)
Data Sheet 289
Serial Communications Interface (SCI)
Table 16-8. SCI Baud Rate Selection Examples
SCP1 and SCP0 00 00 00 00 00 00 00 00 01 01 01 01 01 01 01 01 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 Prescaler Divisor (PD) 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 13 13 13 13 13 13 13 13 SCR2, SCR1, and SCR0 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 Baud Rate Divisor (BD) 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 Baud Rate (fBUS = 4.9152 MHz) 76,800 38,400 19,200 9600 4800 2400 1200 600 25,600 12,800 6400 3200 1600 800 400 200 19,200 9600 4800 2400 1200 600 300 150 5908 2954 1477 739 369 185 92 46
Data Sheet 290
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Serial Communications Interface (SCI) Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 17. Multi-Master IIC Interface (MMIIC)
17.1 Contents
17.2 17.3 17.4 17.5 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 Multi-Master IIC System Configuration . . . . . . . . . . . . . . . . . . 295
17.6 Multi-Master IIC Bus Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 295 17.6.1 START Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 17.6.2 Slave Address Transmission . . . . . . . . . . . . . . . . . . . . . . .296 17.6.3 Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 17.6.4 Repeated START Signal . . . . . . . . . . . . . . . . . . . . . . . . . . 297 17.6.5 STOP Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 17.6.6 Arbitration Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 17.6.7 Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 17.6.8 Handshaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 17.6.9 Packet Error Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 17.7 MMIIC I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 17.7.1 MMIIC Address Register (MMADR) . . . . . . . . . . . . . . . . . . 299 17.7.2 MMIIC Control Register 1 (MMCR1) . . . . . . . . . . . . . . . . . 301 17.7.3 MMIIC Control Register 2 (MMCR2) . . . . . . . . . . . . . . . . . 303 17.7.4 MMIIC Status Register (MMSR). . . . . . . . . . . . . . . . . . . . . 305 17.7.5 MMIIC Data Transmit Register (MMDTR) . . . . . . . . . . . . . 307 17.7.6 MMIIC Data Receive Register (MMDRR). . . . . . . . . . . . . . 308 17.7.7 MMIIC CRC Data Register (MMCRCDR). . . . . . . . . . . . . . 309 17.7.8 MMIIC Frequency Divider Register (MMFDR) . . . . . . . . . . 310 17.8 Program Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 17.8.1 Data Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312 17.9 SMBus Protocols with PEC and without PEC. . . . . . . . . . . . . 313
Data Sheet 291
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC)
Multi-Master IIC Interface (MMIIC)
17.9.1 17.9.2 17.9.3 17.9.4 17.9.5 17.9.6 17.9.7 Quick Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Send Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Receive Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Write Byte/Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Read Byte/Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Process Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 Block Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
17.10 SMBus Protocol Implementation . . . . . . . . . . . . . . . . . . . . . . 316
17.2 Introduction
The multi-master IIC (MMIIC) interface is a two wire, bidirectional serial bus which provides a simple, efficient way for data exchange between devices. The interface is designed for internal serial communication between the MCU and other IIC devices. It has hardware generated START and STOP signals; and byte by byte interrupt driven software algorithm. This bus is suitable for applications which need frequent communications over a short distance between a number of devices. It also provides a flexibility that allows additional devices to be connected to the bus. The maximum data rate is 100k-bps, and the maximum communication distance and number of devices that can be connected is limited by a maximum bus capacitance of 400pF. This MMIIC interface is also SMBus (System Management Bus) version 1.0 and 1.1 compatible, with hardware cyclic redundancy code (CRC) generation, making it suitable for smart battery applications. For connection flexibility, two channels are available: * * Channel 0 -- SDA0 and SCL0 Channel 1 -- SDA1 and SCL1
The two channels are multiplexed; only one channel is active at any one time.
Data Sheet 292
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor
Multi-Master IIC Interface (MMIIC) Features
17.3 Features
Features of the MMIC module include: * * * * * * * * * * * * * * * Full SMBus version 1.0/1.1 compliance Multi-master IIC bus standard Software programmable for one of eight different serial clock frequencies Software controllable acknowledge bit generation Interrupt driven byte by byte data transfer Calling address identification interrupt Arbitration loss detection and no-ACK awareness in master mode and automatic mode switching from master to slave Auto detection of R/W bit and switching of transmit or receive mode accordingly Detection of START, repeated START, and STOP signals Auto generation of START and STOP condition in master mode Repeated start generation Master clock generator with eight selectable baud rates Automatic recognition of the received acknowledge bit Busy detection Software enabled 8-bit CRC generation/decoding
17.4 I/O Pins
The MMIIC module uses four I/O pins, shared with standard port I/O pins. The full name of the MMIIC I/O pins are listed in Table 17-1. The generic pin name appear in the text that follows. The SDA0/SCL0 and SDA1/SCL1 pins are open-drain. When configured as general purpose output pins (PTB0-PTB3), pullup resistors must be connected to these pins.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC)
Data Sheet 293
Multi-Master IIC Interface (MMIIC)
Table 17-1. Pin Name Conventions
MMIIC Generic Pin Names: SDA0 SCL0 SDA1 SCL1 Full MCU Pin Names: PTB0/SDA0 PTB1/SCL0 PTB2/SDA1/TxD PTB3/SCL1/RxD Pin Selected for MMIIC Function By: MMEN and SDASCL1 bits in MMCR1 ($0049) ENSCI bit in SCC1 ($0013); MMEN and SDASCL1 bits in MMCR1 ($0049)
Addr.
Register Name
Bit 7
6 MMAD6 0 MMIEN 0
5 MMAD5 1 0
MMCLRBB
4 MMAD4 0 0
3 MMAD3 0
2 MMAD2 0
1 MMAD1 0
MMCRCBYTE
Bit 0
MMEXTAD
$0048
Read: MMAD7 MMIIC Address Register Write: (MMADR) Reset: 1 MMEN 0
0 SDASCL1 0
MMCRCEF
Read: MMIIC Control Register 1 $0049 Write: (MMCR1) Reset:
MMTXAK REPSEN 0 MMRW 0 0 0
0 MMBB
0 MMAST 0
0 0
Read: MMALIF MMNAKIF MMIIC Control Register 2 $004A Write: 0 0 (MMCR2) Reset: 0 0 Read: MMRXIF MMIIC Status Register Write: 0 (MMSR) Reset: 0 Read: MMIIC Data Transmit MMTD7 Register Write: (MMDTR) Reset: 0 Read: MMRD7 MMIIC Data Receive Register Write: (MDDRR) Reset: 0 MMTXIF 0 0 MMTD6 0 MMRD6
0
0
0
Unaffected
MMATCH MMSRW MMRXAK MMCRCBF MMTXBE MMRXBF
$004B
0 MMTD5 0 MMRD5
0 MMTD4 0 MMRD4
1 MMTD3 0 MMRD3
0 MMTD2 0 MMRD2
1 MMTD1 0 MMRD1
0 MMTD0 0 MMRD0
$004C
$004D
0
0
0
0
0
0
0
Read: MMCRCD7 MMCRCD6 MMCRCD5 MMCRCD4 MMCRCD3 MMCRCD2 MMCRCD1 MMCRCD0 MMIIC CRC Data Register Write: $004E (MMCRDR) Reset: 0 0 0 0 0 0 0 0 Read: MMIIC Frequency Divider $004F Register Write: (MMFDR) Reset: 0 0 0 0 0 MMBR2 1 MMBR1 0 MMBR0 0
0
0
0
0
0
= Unimplemented
Figure 17-1. MMIIC I/O Register Summary
Data Sheet 294 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor
Multi-Master IIC Interface (MMIIC) Multi-Master IIC System Configuration
17.5 Multi-Master IIC System Configuration
The multi-master IIC system uses a serial data line SDA and a serial clock line SCL for data transfer. All devices connected to it must have open collector (drain) outputs and the logical-AND function is performed on both lines by two pull-up resistors.
17.6 Multi-Master IIC Bus Protocol
Normally a standard communication is composed of four parts: 1. START signal, 2. slave address transmission, 3. data transfer, and 4. STOP signal. These are described briefly in the following sections and illustrated in Figure 17-2.
9th clock pulse MSB SCL 1 1 0 0 0 0 1 LSB 1 MSB 1 1 0 1 0 0 1 9th clock pulse LSB 1
SDA ACK START signal MSB SCL 1 1 0 0 0 0 1 LSB 1 MSB 1 1 0 1 0 0 1 Data must be stable when SCL is HIGH No ACK STOP signal LSB 1
SDA ACK START signal Repeated START signal No ACK STOP signal
Figure 17-2. Multi-Master IIC Bus Transmission Signal Diagram
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Data Sheet 295
Multi-Master IIC Interface (MMIIC)
17.6.1 START Signal When the bus is free, (i.e. no master device is engaging the bus -- both SCL and SDA lines are at logic high) a master may initiate communication by sending a START signal. As shown in Figure 17-2, a START signal is defined as a high to low transition of SDA while SCL is high. This signal denotes the beginning of a new data transfer (each data transfer may contain several bytes of data) and wakes up all slaves.
17.6.2 Slave Address Transmission The first byte transferred immediately after the START signal is the slave address transmitted by the master. This is a 7-bit calling address followed by a R/W-bit. The R/W-bit dictates to the slave the desired direction of the data transfer. A logic 0 indicates that the master wishes to transmit data to the slave; a logic 1 indicates that the master wishes to receive data from the slave. Only the slave with a matched address will respond by sending back an acknowledge bit by pulling SDA low on the 9th clock cycle. (See Figure 17-2.)
17.6.3 Data Transfer Once a successful slave addressing is achieved, the data transfer can proceed byte by byte in the direction specified by the R/W-bit sent by the calling master. Each data byte is 8 bits. Data can be changed only when SCL is low and must be held stable when SCL is high as shown in Figure 17-2. The MSB is transmitted first and each byte has to be followed by an acknowledge bit. This is signalled by the receiving device by pulling the SDA low on the 9th clock cycle. Therefore, one complete data byte transfer requires 9 clock cycles. If the slave receiver does not acknowledge the master, the SDA line should be left high by the slave. The master can then generate a STOP signal to abort the data transfer or a START signal (repeated START) to commence a new transfer.
Data Sheet 296 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor
Multi-Master IIC Interface (MMIIC) Multi-Master IIC Bus Protocol
If the master receiver does not acknowledge the slave transmitter after a byte has been transmitted, it means an "end of data" to the slave. The slave should release the SDA line for the master to generate a STOP or START signal.
17.6.4 Repeated START Signal As shown in Figure 17-2, a repeated START signal is used to generate START signal without first generating a STOP to terminate the communication. This is used by the master to communicate with another slave or with the same slave in a different mode (transmit/receive mode) without releasing the bus.
17.6.5 STOP Signal The master can terminate the communication by generating a STOP signal to free the bus. However, the master may generate a START signal followed by a calling command without first generating a STOP signal. This is called repeat START. A STOP signal is defined as a low to high transition of SDA while SCL is at logic high (see Figure 17-2).
17.6.6 Arbitration Procedure The interface circuit is a multi-master system which allows more than one master to be connected. If two or more masters try to control the bus at the same time, a clock synchronization procedure determines the bus clock. The clock low period is equal to the longest clock low period and the clock high period is equal to the shortest one among the masters. A data arbitration procedure determines the priority. A master will lose arbitration if it transmits a logic 1 while another transmits a logic 0. The losing master will immediately switch over to slave receive mode and stops its data and clock outputs. The transition from master to slave will not generate a STOP condition. Meanwhile a software bit will be set by hardware to indicates loss of arbitration.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC)
Data Sheet 297
Multi-Master IIC Interface (MMIIC)
17.6.7 Clock Synchronization Since wired-AND logic is performed on SCL line, a high to low transition on the SCL line will affect the devices connected to the bus. The devices start counting their low period once a device's clock has gone low, it will hold the SCL line low until the clock high state is reached. However, the change of low to high in this device clock may not change the state of the SCL line if another device clock is still in its low period. Therefore the synchronized clock SCL will be held low by the device which last releases SCL to logic high. Devices with shorter low periods enter a high wait state during this time. When all devices concerned have counted off their low period, the synchronized SCL line will be released and go high, and all devices will start counting their high periods. The first device to complete its high period will again pull the SCL line low. Figure 17-3 illustrates the clock synchronization waveforms.
Start counting high period
WAIT
SCL1
SCL2
SCL
Internal counter reset
Figure 17-3. Clock Synchronization
17.6.8 Handshaking The clock synchronization mechanism can be used as a handshake in data transfer. A slave device may hold the SCL low after completion of one byte data transfer and will halt the bus clock, forcing the master clock into a wait state until the slave releases the SCL line.
Data Sheet 298
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor
Multi-Master IIC Interface (MMIIC) MMIIC I/O Registers
17.6.9 Packet Error Code The packet error code (PEC) for the MMIIC interface is in the form a cyclic redundancy code (CRC). The PEC is generated by hardware for every transmitted and received byte of data. The transmission of the generated PEC is controlled by user software. The CRC data register, MMCRCDR, contains the generated PEC byte, with three other bits in the MMIIC control registers and status register monitoring and controlling the PEC byte.
17.7 MMIIC I/O Registers
These I/O registers control and monitor MMIIC operation: * * * * * * * * MMIIC address register (MMADR) -- $0048 MMIIC control register 1 (MMCR1) -- $0049 MMIIC control register 2 (MMCR2) -- $004A MMIIC status register (MMSR) -- $004B MMIIC data transmit register (MMDTR) -- $004C MMIIC data receive register (MMDRR) -- $004D MMIIC CRC data register (MMCRCDR) -- $004E MMIIC frequency divide register (MMFDR) -- $004F
17.7.1 MMIIC Address Register (MMADR)
Address: $0048 Bit 7 Read: MMAD7 Write: Reset: 1 0 1 0 0 0 0 0 MMAD6 MMAD5 MMAD4 MMAD3 MMAD2 MMAD1
MMEXTAD
6
5
4
3
2
1
Bit 0
Figure 17-4. MMIIC Address Register (MMADR)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC)
Data Sheet 299
Multi-Master IIC Interface (MMIIC)
MMAD[7:1] -- Multi-Master Address These seven bits represent the MMIIC interface's own specific slave address when in slave mode, and the calling address when in master mode. Software must update MMAD[7:1] as the calling address while entering master mode and restore its own slave address after master mode is relinquished. This register is cleared as $A0 upon reset. MMEXTAD -- Multi-Master Expanded Address This bit is set to expand the address of the MMIIC in slave mode. When set, the MMIIC will acknowledge the following addresses from a calling master: $MMAD[7:1], 0000000, and 0001100. Reset clears this bit. 1 = MMIIC responds to the following calling addresses: $MMAD[7:1], 0000000, and 0001100. 0 = MMIIC responds to address $MMAD[7:1] For example, when MMADR is configured as:
MMAD7 MMAD6 MMAD5 MMAD4 MMAD3 MMAD2 MMAD1 MMEXTAD 1 1 0 1 0 1 0 1
The MMIIC module will respond to the calling address:
Bit 7 1 6 1 5 0 4 1 3 0 2 1 Bit 1 0
or the general calling address:
0 0 0 0 0 0 0
or the calling address:
Bit 7 0 6 0 5 0 4 1 3 1 2 0 Bit 1 0
Note that bit-0 of the 8-bit calling address is the MMRW bit from the calling master.
Data Sheet 300
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor
Multi-Master IIC Interface (MMIIC) MMIIC I/O Registers
17.7.2 MMIIC Control Register 1 (MMCR1)
Address: $0049 Bit 7 Read: MMEN Write: Reset: 0 0 MMIEN
MMCLRBB
6
5 0
4 0
3
2
1
MMCRCBYTE
Bit 0 SDASCL1 0
MMTXAK REPSEN 0 0 0 0
0
= Unimplemented
Figure 17-5. MMIIC Control Register 1 (MMCR1) MMEN -- MMIIC Enable This bit is set to enable the Multi-master IIC module. When MMEN = 0, module is disabled and all flags will restore to its poweron default states. Reset clears this bit. 1 = MMIIC module enabled 0 = MMIIC module disabled MMIEN -- MMIIC Interrupt Enable When this bit is set, the MMTXIF, MMRXIF, MMALIF, and MMNAKIF flags are enabled to generate an interrupt request to the CPU. When MMIEN is cleared, the these flags are prevented from generating an interrupt request. Reset clears this bit. 1 = MMTXIF, MMRXIF, MMALIF, and/or MMNAKIF bit set will generate interrupt request to CPU 0 = MMTXIF, MMRXIF, MMALIF, and/or MMNAKIF bit set will not generate interrupt request to CPU MMCLRBB -- MMIIC Clear Busy Flag Writing a logic 1 to this write-only bit clears the MMBB flag. MMCLRBB always reads as a logic 0. Reset clears this bit. 1 = Clear MMBB flag 0 = No affect on MMBB flag
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC)
Data Sheet 301
Multi-Master IIC Interface (MMIIC)
MMTXAK -- MMIIC Transmit Acknowledge Enable This bit is set to disable the MMIIC from sending out an acknowledge signal to the bus at the 9th clock bit after receiving 8 data bits. When MMTXAK is cleared, an acknowledge signal will be sent at the 9th clock bit. Reset clears this bit. 1 = MMIIC does not send acknowledge signals at 9th clock bit 0 = MMIIC sends acknowledge signal at 9th clock bit REPSEN -- Repeated Start Enable This bit is set to enable repeated START signal to be generated when in master mode transfer (MMAST = 1). The REPSEN bit is cleared by hardware after the completion of repeated START signal or when the MMAST bit is cleared. Reset clears this bit. 1 = Repeated START signal will be generated if MMAST bit is set 0 = No repeated START signal will be generated MMCRCBYTE -- MMIIC CRC Byte In receive mode, this bit is set by software to indicate that the next receiving byte will be the packet error checking (PEC) data. In master receive mode, after completion of CRC generation on the received PEC data, an acknowledge signal is sent if MMTXAK = 0; no acknowledge is sent If MMTXAK = 1. In slave receive mode, no acknowledge signal is sent if a CRC error is detected on the received PEC data. If no CRC error is detected, an acknowledge signal is sent if MMTXAK = 0; no acknowledge is sent If MMTXAK = 1. Under normal operation, the user software should clear MMTXAK bit before setting MMCRCBYTE bit to ensure that an acknowledge signal is sent when no CRC error is detected. The MMCRCBYTE bit should not be set in transmit mode. This bit is cleared by the next START signal. Reset also clears this bit. 1 = Next receiving byte is the packet error checking (PEC) data 0 = Next receiving byte is not PEC data
Data Sheet 302
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor
Multi-Master IIC Interface (MMIIC) MMIIC I/O Registers
SDASCL1 -- SDA and SCL I/O Pin Select This bit selects either SDA0 and SCL0, or SDA1 and SCL1, for MMIIC I/O pins when MMIIC module is enabled (MMEN = 1). If the SCI module is enabled (ENSCI = 0), the SDA1 and SCL1 pins are not available for MMIIC. Reset clears SDASCL1 bit. 1 = MMIIC module uses SDA1 and SCL1 I/O pins 0 = MMIIC module uses SDA0 and SCL0 I/O pins 17.7.3 MMIIC Control Register 2 (MMCR2)
Address: $004A Bit 7 6 5 MMBB MMAST Write: Reset: 0 0 0 0 0 0 0 0 0
Unaffected
4
3 MMRW
2 0
1 0
Bit 0
MMCRCEF
Read: MMALIF MMNAKIF
= Unimplemented
Figure 17-6. MMIIC Control Register 2 (MMCR2) MMALIF -- Arbitration Loss Interrupt Flag This flag is set when software attempt to set MMAST but the MMBB has been set by detecting the start condition on the lines or when the MMIIC is transmitting a "1" to SDA line but detected a "0" from SDA line in master mode -- an arbitration loss. This bit generates an interrupt request to the CPU if the MMIEN bit in MMCR1 is set. This bit is cleared by writing "0" to it or by reset. 1 = Lost arbitration in master mode 0 = No arbitration lost MMNAKIF -- No AcKnowledge Interrupt Flag (Master Mode) This flag is only set in master mode (MMAST = 1) when there is no acknowledge bit detected after one data byte or calling address is transferred. This flag also clears MMAST. MMNAKIF generates an interrupt request to CPU if the MMIEN bit in MMCR1 is set. This bit is cleared by writing "0" to it or by reset. 1 = No acknowledge bit detected 0 = Acknowledge bit detected
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Data Sheet 303
Multi-Master IIC Interface (MMIIC)
MMBB -- MMIIC Bus Busy Flag This flag is set after a start condition is detected (bus busy), and is cleared when a stop condition (bus idle) is detected or the MMIIC is disabled. Reset clears this bit. 1 = Start condition detected 0 = Stop condition detected or MMIIC is disabled MMAST -- MMIIC Master Control This bit is set to initiate a master mode transfer. In master mode, the module generates a start condition to the SDA and SCL lines, followed by sending the calling address stored in MMADR. When the MMAST bit is cleared by MMNAKIF set (no acknowledge) or by software, the module generates the stop condition to the lines after the current byte is transmitted. If an arbitration loss occurs (MMALIF = 1), the module reverts to slave mode by clearing MMAST, and releasing SDA and SCL lines immediately. This bit is cleared by writing "0" to it or by reset. 1 = Master mode operation 0 = Slave mode operation MMRW -- MMIIC Master Read/Write This bit is transmitted out as bit 0 of the calling address when the module sets the MMAST bit to enter master mode. The MMRW bit determines the transfer direction of the data bytes that follows. When it is "1", the module is in master receive mode. When it is "0", the module is in master transmit mode. Reset clears this bit. 1 = Master mode receive 0 = Master mode transmit MMCRCEF -- MMIIC CRC Error Flag This flag is set when a CRC error is detected, and cleared when no CRC error is detected. The MMCRCEF is only meaningful after receiving a PEC data. This flag is unaffected by reset. 1 = CRC error detected on PEC byte 0 = No CRC error detected on PEC byte
Data Sheet 304
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor
Multi-Master IIC Interface (MMIIC) MMIIC I/O Registers
17.7.4 MMIIC Status Register (MMSR)
Address: $004B Bit 7 Read: MMRXIF Write: Reset: 0 0 6 MMTXIF 0 0 0 0 1 0 1 0 5 4 3 2 1 Bit 0
MMATCH MMSRW MMRXAK MMCRCBF MMTXBE MMRXBF
= Unimplemented
Figure 17-7. MMIIC Status Register (MMSR) MMRXIF -- MMIIC Receive Interrupt Flag This flag is set after the data receive register (MMDRR) is loaded with a new received data. Once the MMDRR is loaded with received data, no more received data can be loaded to the MMDRR register until the CPU reads the data from the MMDRR to clear MMRXBF flag. MMRXIF generates an interrupt request to CPU if the MMIEN bit in MMCR is also set. This bit is cleared by writing "0" to it or by reset; or when the MMEN = 0. 1 = New data in data receive register (MMDRR) 0 = No data received MMTXIF -- MMIIC Transmit Interrupt Flag This flag is set when data in the data transmit register (MMDTR) is downloaded to the output circuit, and that new data can be written to the MMDTR. MMTXIF generates an interrupt request to CPU if the MMIEN bit in MMCR is also set. This bit is cleared by writing "0" to it or when the MMEN = 0. 1 = Data transfer completed 0 = Data transfer in progress MMATCH -- MMIIC Address Match Flag This flag is set when the received data in the data receive register (MMDRR) is a calling address which matches with the address or its extended addresses (MMEXTAD = 1) specified in the address register (MMADR). The MMATCH flag is set at the 9th clock of the calling address and will be cleared on the 9th clock of the next receiving data. Note: slave transmits do not clear MMATCH.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Data Sheet 305
Multi-Master IIC Interface (MMIIC)
1 = Received address matches MMADR 0 = Received address does not match MMSRW -- MMIIC Slave Read/Write Select This bit indicates the data direction when the module is in slave mode. It is updated after the calling address is received from a master device. MMSRW = 1 when the calling master is reading data from the module (slave transmit mode). MMSRW = 0 when the master is writing data to the module (receive mode). 1 = Slave mode transmit 0 = Slave mode receive MMRXAK -- MMIIC Receive Acknowledge When this bit is cleared, it indicates an acknowledge signal has been received after the completion of eight data bits transmission on the bus. When MMRXAK is set, it indicates no acknowledge signal has been detected at the 9th clock; the module will release the SDA line for the master to generate STOP or repeated START condition. Reset sets this bit. 1 = No acknowledge signal received at 9th clock 0 = Acknowledge signal received at 9th clock MMCRCBF -- CRC Data Buffer Full Flag This flag is set when the CRC data register (MMCRCDR) is loaded with a CRC byte for the current received or transmitted data. In transmit mode, after a byte of data has been sent (MMTXIF = 1), the MMCRCBF will be set when the CRC byte has been generated and ready in the MMCRCDR. The content of the MMCRCDR should be copied to the MMDTR for transmission. In receive mode, the MMCRCBF is set when the CRC byte has been generated and ready in MMCRCDR, for the current byte of received data. The MMCRCBF bit is cleared when the CRC data register is read. Reset also clears this bit. 1 = Data ready in CRC data register (MMCRCDR) 0 = Data not ready in CRC data register (MMCRCDR)
Data Sheet 306
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor
Multi-Master IIC Interface (MMIIC) MMIIC I/O Registers
MMTXBE -- MMIIC Transmit Buffer Empty This flag indicates the status of the data transmit register (MMDTR). When the CPU writes the data to the MMDTR, the MMTXBE flag will be cleared. MMTXBE is set when MMDTR is emptied by a transfer of its data to the output circuit. Reset sets this bit. 1 = Data transmit register empty 0 = Data transmit register full MMRXBF -- MMIIC Receive Buffer Full This flag indicates the status of the data receive register (MMDRR). When the CPU reads the data from the MMDRR, the MMRXBF flag will be cleared. MMRXBF is set when MMDRR is full by a transfer of data from the input circuit to the MMDRR. Reset clears this bit. 1 = Data receive register full 0 = Data receive register empty
17.7.5 MMIIC Data Transmit Register (MMDTR)
Address: $004C Bit 7 Read: MMTD7 Write: Reset: 0 0 0 0 0 0 0 0 MMTD6 MMTD5 MMTD4 MMTD3 MMTD2 MMTD1 MMTD0 6 5 4 3 2 1 Bit 0
Figure 17-8. MMIIC Data Transmit Register (MMDTR) When the MMIIC module is enabled, MMEN = 1, data written into this register depends on whether module is in master or slave mode. In slave mode, the data in MMDTR will be transferred to the output circuit when: * * the module detects a matched calling address (MMATCH = 1), with the calling master requesting data (MMSRW = 1); or the previous data in the output circuit has be transmitted and the receiving master returns an acknowledge bit, indicated by a received acknowledge bit (MMRXAK = 0).
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC)
Data Sheet 307
Multi-Master IIC Interface (MMIIC)
If the calling master does not return an acknowledge bit (MMRXAK = 1), the module will release the SDA line for master to generate a STOP or repeated START condition. The data in the MMDTR will not be transferred to the output circuit until the next calling from a master. The transmit buffer empty flag remains cleared (MMTXBE = 0). In master mode, the data in MMDTR will be transferred to the output circuit when: * the module receives an acknowledge bit (MMRXAK = 0), after setting master transmit mode (MMRW = 0), and the calling address has been transmitted; or the previous data in the output circuit has be transmitted and the receiving slave returns an acknowledge bit, indicated by a received acknowledge bit (MMRXAK = 0).
*
If the slave does not return an acknowledge bit (MMRXAK = 1), the master will generate a STOP or repeated START condition. The data in the MMDTR will not be transferred to the output circuit. The transmit buffer empty flag remains cleared (MMTXBE = 0). The sequence of events for slave transmit and master transmit are illustrated in Figure 17-12.
17.7.6 MMIIC Data Receive Register (MMDRR)
Address: $004D Bit 7 Read: MMRD7 Write: Reset: 0 0 0 0 0 0 0 0 6 MMRD6 5 MMRD5 4 MMRD4 3 MMRD3 2 MMRD2 1 MMRD1 Bit 0 MMRD0
= Unimplemented
Figure 17-9. MMIIC Data Receive Register (MMDRR) When the MMIIC module is enabled, MMEN = 1, data in this read-only register depends on whether module is in master or slave mode. In slave mode, the data in MMDRR is:
Data Sheet 308 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor
Multi-Master IIC Interface (MMIIC) MMIIC I/O Registers
* *
the calling address from the master when the address match flag is set (MMATCH = 1); or the last data received when MMATCH = 0.
In master mode, the data in the MMDRR is: * the last data received.
When the MMDRR is read by the CPU, the receive buffer full flag is cleared (MMRXBF = 0), and the next received data is loaded to the MMDRR. Each time when new data is loaded to the MMDRR, the MMRXIF interrupt flag is set, indicating that new data is available in MMDRR. The sequence of events for slave receive and master receive are illustrated in Figure 17-12.
17.7.7 MMIIC CRC Data Register (MMCRCDR)
Address: $004E Bit 7 6 5 4 3 2 1 Bit 0
Read: MMCRCD7 MMCRCD6 MMCRCD5 MMCRCD4 MMCRCD3 MMCRCD2 MMCRCD1 MMCRCD0 Write: Reset: 0 0 0 0 0 0 0 0
= Unimplemented
Figure 17-10. MMIIC CRC Data Register (MMCRCDR) When the MMIIC module is enabled, MMEN = 1, and the CRC buffer full flag is set (MMCRCBF = 1), data in this read-only register contains the generated CRC byte for the last byte of received or transmitted data. A CRC byte is generated for each received and transmitted data byte and loaded to the CRC data register. The MMCRCBF bit will be set to indicate the CRC byte is ready in the CRC data register. Reading the CRC data register clears the MMCRCBF bit. If the CRC data register is not read, the MMCRCBF bit will be cleared by hardware before the next CRC byte is loaded.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC)
Data Sheet 309
Multi-Master IIC Interface (MMIIC)
17.7.8 MMIIC Frequency Divider Register (MMFDR)
Address: $004F Bit 7 Read: Write: Reset: 0 0 0 0 0 1 0 0 0 6 0 5 0 4 0 3 0 MMBR2 MMBR1 MMBR0 2 1 Bit 0
= Unimplemented
Figure 17-11. MMIIC Frequency Divider Register (MMFDR) The three bits in the frequency divider register (MMFDR) selects the divider to divide the bus clock to the desired baud rate for the MMIIC data transfer. Table 17-2 shows the divider values for MMBR[2:0]. Table 17-2. MMIIC Baud Rate Selection
MMIIC Baud Rates for Bus Clocks: MMBR2 0 0 0 0 1 1 1 1 MMBR1 0 0 1 1 0 0 1 1 MMBR0 0 1 0 1 0 1 0 1 Divider 8MHz 20 40 80 160 320 640 1280 2560 400kHz 200kHz 100kHz 50kHz 25kHz 12.5kHz 6.25kHz 3.125kHz 4MHz 200kHz 100kHz 50kHz 25kHz 12.5kHz 6.25kHz 3.125kHz 1.5625kHz 2MHz 100kHz 50kHz 25kHz 12.5kHz 6.25kHz 3.125kHz 1.5625kHz 0.78125kHz 1MHz 50kHz 25kHz 12.5kHz 6.25kHz 3.125kHz 1.5625kHz 0.78125kHz 0.3906kHz
NOTE:
The frequency of the MMIIC baud rate is only guaranteed for 100kHz to 10kHz. The divider is available for the flexibility on bus frequency selection.
Data Sheet 310
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor
Multi-Master IIC Interface (MMIIC) Program Algorithm
17.8 Program Algorithm
When the MMIIC module detects an arbitration loss in master mode, it releases both SDA and SCL lines immediately. But if there are no further STOP conditions detected, the module will hang up. Therefore, it is recommended to have time-out software to recover from this condition. The software can start the time-out counter by looking at the MMBB (bus busy) flag and reset the counter on the completion of one byte transmission. If a time-out has occurred, software can clear the MMEN bit (disable MMIIC module) to release the bus, and hence clear the MMBB flag. This is the only way to clear the MMBB flag by software if the module hangs up due to a no STOP condition received. The MMIIC can resume operation again by setting the MMEN bit.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC)
Data Sheet 311
Multi-Master IIC Interface (MMIIC)
17.8.1 Data Sequence
(a) Master Transmit Mode
START Address 0 ACK TX Data1 ACK TX DataN ACK STOP
MMTXBE=0 MMRW=0 MMAST=1 Data1 MMDTR
MMTXBE=1 MMTXIF=1 Data2 MMDTR
MMTXBE=1 MMTXIF=1 Data3 MMDTR
MMTXBE=1 MMNAKIF=1 MMTXIF=1 MMAST=0 DataN+2 MMDTR MMTXBE=0
(b) Master Receive Mode
START Address 1 ACK RX Data1 ACK RX DataN NAK STOP
MMRXBF=0 MMRW=1 MMAST=1 MMTXBE=0 (dummy data MMDTR)
Data1 MMDRR MMRXIF=1 MMRXBF=1
DataN MMDRR MMNAKIF=1 MMRXIF=1 MMAST=0 MMRXBF=1
(c) Slave Transmit Mode
START Address 1 ACK TX Data1 ACK TX DataN NAK STOP
MMTXBE=1 MMRXBF=0
MMRXIF=1 MMRXBF=1 MMATCH=1 MMSRW=1 Data1 MMDTR
MMTXBE=1 MMTXIF=1 Data2 MMDTR
MMTXBE=1 MMNAKIF=1 MMTXIF=1 MMTXBE=0 DataN+2 MMDTR
(d) Slave Receive Mode
START Address 0 ACK RX Data1 ACK RX DataN ACK STOP
MMTXBE=0 MMRXBF=0
MMRXIF=1 MMRXBF=1 MMATCH=1 MMSRW=0
Data1 MMDRR MMRXIF=1 MMRXBF=1
DataN MMDRR MMRXIF=1 MMRXBF=1
Shaded data packets indicate transmissions by the MCU
Figure 17-12. Data Transfer Sequences for Master/Slave Transmit/Receive Modes
Data Sheet 312 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor
Multi-Master IIC Interface (MMIIC) SMBus Protocols with PEC and without PEC
17.9 SMBus Protocols with PEC and without PEC
Following is a description of the various MMIIC bus protocols with and without a packet error code (PEC).
17.9.1 Quick Command
1 START 7 1 1 1 STOP Stop Condition Master to Slave Slave to Master
Slave Address RW ACK Start Condition Command Bit Acknowledge
Figure 17-13. Quick Command
17.9.2 Send Byte
START
Slave Address
W
ACK
Command Code
ACK
STOP
(a) Send Byte Protocol START Slave Address W ACK Command Code ACK
PEC
ACK
STOP
(b) Send Byte Protocol with PEC
Figure 17-14. Send Byte
17.9.3 Receive Byte
START
Slave Address
R
ACK
Data Byte
NAK
STOP
(a) Receive Byte Protocol START Slave Address R ACK Data Byte ACK
PEC
NAK
STOP
(b) Receive Byte Protocol with PEC
Figure 17-15. Receive Byte
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC)
Data Sheet 313
Multi-Master IIC Interface (MMIIC)
17.9.4 Write Byte/Word
START Slave Address W ACK
Command Code
ACK
Data Byte
ACK
STOP
(a) Write Byte Protocol START Slave Address W ACK
Command Code
ACK
Data Byte
ACK
PEC
ACK
STOP
(b) Write Byte Protocol with PEC START Slave Address W ACK
Command Code
ACK
Data Byte Low
ACK
Data Byte High
ACK
STOP
(c) Write Word Protocol START Slave Address W ACK
Command Code
ACK
Data Byte Low
ACK
Data Byte High
ACK
PEC
ACK
STOP
(d) Write Word Protocol with PEC
Figure 17-16. Write Byte/Word
17.9.5 Read Byte/Word
START Slave Address W ACK
Command Code
ACK
START
Slave Address
R
ACK
Data Byte
NAK
STOP
(a) Read Byte Protocol START Slave Address W ACK
Command Code
ACK
START
Slave Address
R
ACK
Data Byte
ACK
PEC
NAK
STOP
(b) Read Byte Protocol with PEC START Slave Address W ACK
Command Code
ACK
START
Slave Address
R
ACK
Data Byte Low
ACK
Data Byte High
(c) Read Word Protocol START
NAK
STOP
Slave Address
W ACK
Command Code NAK
ACK
START
Slave Address
R
ACK
Data Byte Low
ACK
Data Byte High
ACK
PEC
STOP
(d) Read Word Protocol with PEC
Figure 17-17. Read Byte/Word
Data Sheet 314 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor
Multi-Master IIC Interface (MMIIC) SMBus Protocols with PEC and without PEC
17.9.6 Process Call
START START (a) Process Call START START
Slave Address Slave Address
W ACK R
Command Code Data Byte Low
ACK ACK
Data Byte Low Data Byte High
ACK NAK
Data Byte High STOP
ACK
ACK
Slave Address Slave Address
W ACK R
Command Code Data Byte Low
ACK ACK
Data Byte Low Data Byte High
ACK ACK
Data Byte High STOP
ACK PEC NAK STOP
ACK
(b) Process Call with PEC
Figure 17-18. Process Call
17.9.7 Block Read/Write
START
Slave Address
W ACK
Command Code ACK
ACK
Byte Count = N
ACK
Data Byte 1
ACK
Data Byte 2
(a) Block Read START
ACK
Data Byte N
STOP
Slave Address
W ACK
Command Code ACK
ACK
Byte Count = N PEC ACK
ACK STOP
Data Byte 1
ACK
Data Byte 2
ACK
Data Byte N
(b) Block Read with PEC START Slave Address W ACK
Command Code ACK
ACK
START
Slave Address
R
ACK
Byte Count = N
ACK
Data Byte 1
(c) Block Write START
ACK
Data Byte 2
Data Byte N
NAK
STOP
Slave Address
W ACK
Command Code ACK
ACK
START
Slave Address
R
ACK
Byte Count = N NAK STOP
ACK
Data Byte 1
ACK
Data Byte 2
Data Byte N
ACK
PEC
(d) Block Write with PEC
Figure 17-19. Block Read/Write
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Multi-Master IIC Interface (MMIIC)
Data Sheet 315
Multi-Master IIC Interface (MMIIC) 17.10 SMBus Protocol Implementation
Shaded data packets indicate transmissions by the MCU
MASTER MODE
START Address 0 ACK Command ACK START Address 1 ACK RX Data1 ACK ACK RX DataN NAK STOP
OPERATION: Prepare for repeated START FLAGS: MMTXIF set MMRXAK clear ACTION: 1. Set MMRW 2. Set REPSEN 3. Clear MMTXAK 4. Load dummy ($FF) to MMDTR OPERATION: Prepare for Master mode ACTION: 1. Load slave address to MMADR 2. Clear MMRW 3. Load command to MMDTR 4. Set MMAST
OPERATION: Get ready to receive data FLAGS: MMTXIF set MMRXAK clear ACTION: Load dummy ($FF) to MMDTR
OPERATION: Read received data FLAGS: MMRXIF set ACTION: Read Data1 from MMDRR
OPERATION: Generate STOP FLAGS: MMRXIF set ACTION: Read DataN from MMDRR
OPERATION: Read received data and prepare for STOP FLAGS: MMRXIF set ACTION: 1. Set MMTXAK 2. Read Data(N-1) from MMDRR 3. Clear MMAST
SLAVE MODE
START Address 0 ACK Command ACK START Address 1 ACK TX Data1 ACK ACK TX DataN NAK STOP
OPERATION: Slave address match and check for data direction FLAGS: MMRXIF set MMATCH set MMSRW depends on 8th bit of calling address byte ACTION: 1. Check MMSRW 2. Read Slave address
OPERATION: Slave address match and get ready to transmit data FLAGS: MMRXIF set MMATCH set MMSRW depends on 8th bit of calling address byte ACTION: Check MMSRW
OPERATION: Transmit data FLAGS: MMTXIF set MMRXAK clear ACTION: Load Data3 to MMDTR
OPERATION: Last data sent FLAGS: MMTXIF set MMRXAK set ACTION: Load dummy ($FF) to MMDTR
OPERATION: Prepare for Slave mode ACTION: 1. Load slave address to MMADR 2. Clear MMTXAK 3. Clear MMAST
OPERATION: Read and decode received command FLAGS: MMRXIF set MMATCH clear ACTION: Load Data1 to MMDTR
OPERATION: Transmit data FLAGS: MMTXIF set ACTION: Load Data2 to MMDTR
OPERATION: Last data is going to be sent FLAGS: MMTXIF set MMRXAK clear ACTION: Load dummy ($FF) to MMDTR
Figure 17-20. SMBus Protocol Implementation
Data Sheet 316 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 18. Input/Output (I/O) Ports
18.1 Contents
18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
18.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 18.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . 320 18.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . 321 18.3.3 Port A LED Control Register (LEDA) . . . . . . . . . . . . . . . . . 323 18.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 18.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . 324 18.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . 325 18.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 18.5.1 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . 327 18.5.2 Data Direction Register C (DDRC). . . . . . . . . . . . . . . . . . . 329 18.5.3 Port C LED Control Register (LEDC) . . . . . . . . . . . . . . . . . 330 18.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 18.6.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . 331 18.6.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . . 332
18.2 Introduction
Thirty-one (31) bidirectional input-output (I/O) pins form four parallel ports. All I/O pins are programmable as inputs or outputs.
NOTE:
Connect any unused I/O pins to an appropriate logic level, either VDD or VSS. Although the I/O ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Input/Output (I/O) Ports
Data Sheet 317
Input/Output (I/O) Ports
Addr.
Register Name Read: Port A Data Register Write: (PTA) Reset: Read: Port B Data Register Write: (PTB) Reset: Read: Port C Data Register Write: (PTC) Reset: Read: Port D Data Register Write: (PTD) Reset:
Bit 7 PTA7
6 PTA6
5 PTA5
4 PTA4
3 PTA3
2 PTA2
1 PTA1
Bit 0 PTA0
$0000
Unaffected by reset 0 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0
$0001
Unaffected by reset PTC7 PTC6 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0
$0002
Unaffected by reset PTD7 PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0
$0003
Unaffected by reset DDRA6 0 DDRB6 0 DDRC6 0 DDRD6 0 0 DDRA5 0 DDRB5 0 DDRC5 0 DDRD5 0 LEDA5 0 LEDC5 0 DDRA4 0 DDRB4 0 DDRC4 0 DDRD4 0 LEDA4 0 LEDC4 0 DDRA3 0 DDRB3 0 DDRC3 0 DDRD3 0 LEDA3 0 LEDC3 0 DDRA2 0 DDRB2 0 DDRC2 0 DDRD2 0 LEDA2 0 0 DDRA1 0 DDRB1 0 DDRC1 0 DDRD1 0 LEDA1 0 0 DDRA0 0 DDRB0 0 DDRC0 0 DDRD0 0 LEDA0 0 0
Read: DDRA7 Data Direction Register A $0004 Write: (DDRA) Reset: 0 Read: Data Direction Register B $0005 Write: (DDRB) Reset: 0
0
Read: DDRC7 Data Direction Register C $0006 Write: (DDRC) Reset: 0 Read: DDRD7 Data Direction Register D $0007 Write: (DDRD) Reset: 0 Read: Port-A LED Control Register Write: (LEDA) Reset: Read: Port-C LED Control Register Write: (LEDC) Reset: 0
$000C
0 LEDC7 0
0 LEDC6 0
$000D
0
0
0
Figure 18-1. I/O Port Register Summary
Data Sheet 318
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Input/Output (I/O) Ports Freescale Semiconductor
Input/Output (I/O) Ports Introduction
Table 18-1. Port Control Register Bits Summary
Port Bit
0 1 2 A 3 4 5 6 7 0 1 2 B 3 4 5 6 0 1 2 C 3 4 5 6 7 0 1 2 D 3 4 5 6 7
DDR
DDRA0 DDRA1 DDRA2 DDRA3 DDRA4 DDRA5 DDRA6 DDRA7 DDRB0 DDRB1 DDRB2 DDRB3 DDRB4 DDRB5 DDRB6 DDRC0 DDRC1 DDRC2 DDRC3 DDRC4 DDRC5 DDRC6 DDRC7 DDRD0 DDRD1 DDRD2 DDRD3 DDRD4 DDRD5 DDRD6 DDRD7
Module Control Module Register Control Bit
Pin
PTA0/ATD2 PTA1/ATD3
ADC
ADSCR ($0057)
ADCH[4:0]
PTA2/ATD4 PTA3/ATD5 PTA4/ATD6 PTA5/ATD7
TIM1
T1SC0 ($0025) T1SC1 ($0028) MMCR1 ($0049) SCC1 ($0013)(2) MMCR1 ($0049) T2SC0 ($0030) T2SC1 ($0033) -- CONFIG2 ($001D)(1)
ELS0B:ELS0A ELS1B:ELS1A MMEN SDASCL1 ENSCI MMEN SDASCL1 ELS0B:ELS0A ELS1B:ELS1A -- CDOEN PCH0
PTA6/T1CH0 PTA7/T1CH1 PTB0/SDA0(1) PTB1/SCL0(1) PTB2/SDA1/TxD(1) PTB3/SCL1/RxD(1) PTB4/T2CH0 PTB5/T2CH1 PTB6/IRQ2 PTC0/PWM0/CD PTC1/PWM1 PTC2/PWM2 PTC3/ATD8 PTC4/ATD9
MBUS SCI MBUS TIM2 IRQ ANALOG
PWM
PWMCR ($0051)
PCH1 PCH2
ADC
ADSCR ($0057)
ADCH[4:0]
PTC5/ATD10 PTC6/ATD11 PTC7/ATD12
KBIE0 KBIE1 KBIE2 KBI KBIER ($001B) KBIE3 KBIE4 KBIE5 KBIE6 KBIE7
PTD0/KBI0 PTD1/KBI1 PTD2/KBI2 PTD3/KBI3 PTD4/KBI4 PTD5/KBI5 PTD6/KBI6 PTD7/KBI7
Notes: 1. Pins are open-drain when configured as outputs. Pullup resistors must be connected when configured as outputs. 2. Register has the highest priority control on port pin.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Input/Output (I/O) Ports
Data Sheet 319
Input/Output (I/O) Ports 18.3 Port A
Port A is an 8-bit special function port that shares six of its port pins with the analog-to-digital converter (ADC) module and two of its port pins with the timer interface module 1 (TIM1). See Section 15. Analog-to-Digital Converter (ADC) and Section 11. Timer Interface Module (TIM). PTA5-PTA0 pins can be configured for direct LED drive.
18.3.1 Port A Data Register (PTA) The port A data register contains a data latch for each of the eight port A pins.
Address: $0000 Bit 7 Read: PTA7 Write: Reset: Alternative Function: Additional Function: T1CH1 T1CH0 ATD7 Unaffected by Reset ATD6 ATD5 ATD4 ATD3 ATD2 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 6 5 4 3 2 1 Bit 0
LED drive LED drive LED drive LED drive LED drive LED drive
Figure 18-2. Port A Data Register (PTA) PTA[7:0] -- Port A Data Bits These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data. ATD[7:2] -- ADC channels 2 to 7 ATD[7:2] are pins used for the input channels to the analog-to-digital converter module. The channel select bits, ADCH[4:0], in the ADC status and control register define which port pin will be used as an ADC input and overrides any control from the port I/O logic. See Section 14. Analog Module.
Data Sheet 320
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Input/Output (I/O) Ports Freescale Semiconductor
Input/Output (I/O) Ports Port A
T1CH[1:0] -- Timer 1 Channel I/O Bits The T1CH1 and T1CH0 pins are the TIM1 input capture/output compare pins. The edge/level select bits, ELSxB:ELSxA, determine whether the PTA7/T1CH1 and PTA6/T1CH0 pins are timer channel I/O pins or general-purpose I/O pins. See Section 11. Timer Interface Module (TIM).
NOTE:
Care must be taken when reading port A while applying analog voltages to ATD[7:2] pins. If the appropriate ADC channel is not enabled, excessive current drain may occur if analog voltages are applied to the PTAx/ATDx pin, while PTA is read as a digital input. Those ports not selected as analog input channels are considered digital I/O ports. LED drive -- Direct LED drive Pins PTA5-PTA0 pins can be configured for direct LED drive. See 18.3.3 Port A LED Control Register (LEDA).
18.3.2 Data Direction Register A (DDRA) Data direction register A determines whether each port A pin is an input or an output. Writing a logic 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a logic 0 disables the output buffer.
Address: $0004 Bit 7 Read: DDRA7 Write: Reset: 0 0 0 0 0 0 0 0 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 6 5 4 3 2 1 Bit 0
Figure 18-3. Data Direction Register A (DDRA) DDRA[7:0] -- Data Direction Register A Bits These read/write bits control port A data direction. Reset clears DDRA[7:0], configuring all port A pins as inputs. 1 = Corresponding port A pin configured as output 0 = Corresponding port A pin configured as input
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Input/Output (I/O) Ports
Data Sheet 321
Input/Output (I/O) Ports
NOTE:
Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1. Figure 18-4 shows the port A I/O logic.
READ DDRA ($0004)
WRITE DDRA ($0004) INTERNAL DATA BUS RESET WRITE PTA ($0000) PTAx PTAx DDRAx
READ PTA ($0000)
Figure 18-4. Port A I/O Circuit When DDRAx is a logic 1, reading address $0000 reads the PTAx data latch. When DDRAx is a logic 0, reading address $0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 18-2 summarizes the operation of the port A pins. Table 18-2. Port A Pin Functions
DDRA Bit Accesses to DDRA PTA Bit I/O Pin Mode Read/Write Read Write Accesses to PTA
0 1
X(1) X
Input, Hi-Z(2) Output
DDRA[7:0] DDRA[7:0]
Pin PTA[7:0]
PTA[7:0](3) PTA[7:0]
Notes: 1. X = don't care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect input.
Data Sheet 322
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Input/Output (I/O) Ports Freescale Semiconductor
Input/Output (I/O) Ports Port B
18.3.3 Port A LED Control Register (LEDA) The port-A LED control register (LEDA) controls the direct LED drive capability on PTA5-PTA0 pins. Each bit is individually configurable and requires that the data direction register, DDRA, bit be configured as an output.
Address: $000C Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 0 6 0 LEDA5 LEDA4 LEDA3 LEDA2 LEDA1 LEDA0 5 4 3 2 1 Bit 0
Figure 18-5. Port A LED Control Register (LEDA) LEDA[5:0] -- Port A LED Drive Enable Bits These read/write bits are software programmable to enable the direct LED drive on an output port pin. 1 = Corresponding port A pin configured for direct LED drive 0 = Corresponding port A pin configured for standard drive
18.4 Port B
Port B is a 7-bit special function port that shares four of its port pins with the multi-master IIC (MMIIC) interface module, two of its port pins with the serial communications interface (SCI) module, two of its port pins with the timer interface module 2 (TIM2), and one of its port pins with the IRQ module. See Section 17. Multi-Master IIC Interface (MMIIC), Section 16. Serial Communications Interface (SCI), Section 11. Timer Interface Module (TIM), and Section 19. External Interrupt (IRQ).
NOTE:
PTB3-PTB0 are open-drain pins when configured as outputs regardless whether the pins are used as general purpose I/O pins, MMIIC pins, or SCI pins. Therefore, when configured as general purpose output pins, MMIIC pins, or SCI pins (the TxD pin), pullup resistors must be connected to these pins.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Input/Output (I/O) Ports
Data Sheet 323
Input/Output (I/O) Ports
18.4.1 Port B Data Register (PTB) The port B data register contains a data latch for each of the eight port B pins.
Address: $0001 Bit 7 Read: Write: Reset: Alternative Functions: IRQ2 T2CH1 Unaffected by reset RxD T2CH0 SCL1 SDA1 TxD SCL0 SDA0 0 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0 6 5 4 3 2 1 Bit 0
These four pins are open-drain when configured as output pins. Pullup resistors must be connected when configured as outputs.
Figure 18-6. Port B Data Register (PTB) PTB[6:0] -- Port B Data Bits These read/write bits are software programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data. SDA0, SCL0, SDA1, SCL1 -- MMIIC Channels 1 and 2 SDAx and SCLx are the data and clock lines for the MMIIC module. The multi-master enable bit, MMEN, and the MMIIC channel select bit, SDASCL1, in the MMIIC control register 1 determine whether the PTB0/SDA0, PTB1/SCL0, PTB2/SDA1/TxD, and PTB3/SCL1/RxD pins are MMIIC I/O pins or general purpose I/O pins. See Section 17. Multi-Master IIC Interface (MMIIC). TxD, RxD -- SCI Data I/O Pins The TxD and RxD pins are the transmit data output and receive data input for the SCI module. The enable SCI bit, ENSCI, in the SCI control register 1 enables the PTB2/SDA1/TxD and PTB3/SCL1/RxD pins as SCI TxD and RxD pins and overrides any control from the port I/O or MMIIC logic. See Section 16. Serial Communications Interface (SCI).
Data Sheet 324 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Input/Output (I/O) Ports Freescale Semiconductor
Input/Output (I/O) Ports Port B
Table 18-3. PTB2 and PTB3 Pin Configurations
Pin ENSCI Bit ($0013) MMEN Bit ($0049) SDASCL1 Bit ($0049) Pin function
0 PTB2/SDA1/TxD PTB3/SCL1/RxD 0 0 1
0 1 1 X
X 0 1 X
PTB2, PTB3 PTB2, PTB3 SDA1, SCL1 TxD, RxD
T2CH[1:0] -- Timer 2 Channel I/O Bits The T2CH1 and T2CH0 pins are the TIM2 input capture/output compare pins. The edge/level select bits, ELSxB:ELSxA, determine whether the PTB5/T2CH1 and PTB4/T2CH0 pins are timer channel I/O pins or general-purpose I/O pins.See Section 11. Timer Interface Module (TIM). IRQ2 -- External Interrupt Pin 2 IRQ2 pin is the second external interrupt input to the IRQ module. When PTB6/IRQ2 is configured as an input by the data direction bit bit, DDRB6, the pin is both a standard port input pin and an external interrupt pin. See Section 19. External Interrupt (IRQ). 18.4.2 Data Direction Register B (DDRB) Data direction register B determines whether each port B pin is an input or an output. Writing a logic 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the output buffer.
Address: $0005 Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 0 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 6 5 4 3 2 1 Bit 0
Figure 18-7. Data Direction Register B (DDRB)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Input/Output (I/O) Ports
Data Sheet 325
Input/Output (I/O) Ports
DDRB[6:0] -- Data Direction Register B Bits These read/write bits control port B data direction. Reset clears DDRB[6:0], configuring all port B pins as inputs. 1 = Corresponding port B pin configured as output 0 = Corresponding port B pin configured as input
NOTE:
Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1. Figure 18-8 shows the port B I/O logic.
READ DDRB ($0005)
WRITE DDRB ($0005) INTERNAL DATA BUS RESET WRITE PTB ($0001) PTBx DDRBx
PTBx #
READ PTB ($0001)
# PTB3-PTB0 are open-drain pins when configured as outputs.
Figure 18-8. Port B I/O Circuit When DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When DDRBx is a logic 0, reading address $0001 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 18-4 summarizes the operation of the port B pins. Table 18-4. Port B Pin Functions
DDRB Bit Accesses to DDRB PTB Bit I/O Pin Mode Read/Write Read Write Accesses to PTB
0 1
X(1) X
Input, Hi-Z(2) Output
DDRB[6:0] DDRB[6:0]
Pin PTB[6:0]
PTB[6:0](3) PTB[6:0]
Notes: 1. X = don't care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect input.
Data Sheet 326
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Input/Output (I/O) Ports Freescale Semiconductor
Input/Output (I/O) Ports Port C
18.5 Port C
Port C is an 8-bit special function port that shares three of its port pins with the pulse width modulator module, five of its port pins with the analog-to-digital converter module, and one of its pins with the analog module. See Section 13. Pulse Width Modulator (PWM), Section 15. Analog-to-Digital Converter (ADC), and Section 14. Analog Module. PTC7-PTC3 pins can be configured for direct LED drive. 18.5.1 Port C Data Register (PTC) The port C data register contains a data latch for each of the six port C pins.
NOTE:
Bit 7 and bit 6 of PTC are not available in a 42-pin shrink dual in-line package.
Address: $0002 Bit 7 Read: PTC7 Write: Reset: Unaffected by reset ATD12 ATD11 ATD10 ATD9 ATD8 PWM2 PWM1 PWM0 CD PTC6 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0 6 5 4 3 2 1 Bit 0
Alternative Function:
Additional Function: LED drive LED drive LED drive LED drive LED drive
Figure 18-9. Port C Data Register (PTC) PTC[7:0] -- Port C Data Bits These read/write bits are software programmable. Data direction of each port C pin is under the control of the corresponding bit in data direction register C. Reset has no effect on port C data.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Input/Output (I/O) Ports
Data Sheet 327
Input/Output (I/O) Ports
PWM[2:0] -- PWM Channels 0 to 2 PWM[2:0] are pins used for the output channels from the pulse width modulator (PWM) module. The PWM enables bit, PCH[2:0], in the PWM control register define which port pin will be used as a PWM output and overrides any control from the port I/O logic. The PWM0 function on PCT0/PWM0/CD pin can be overrided by the CD output function. See Section 13. Pulse Width Modulator (PWM). ATD[12:8] -- ADC channels 8 to 12 ATD[12:8] are pins used for the input channels to the analog-to-digital converter module. The channel select bits, ADCH[4:0], in the ADC status and control register define which port pin will be used as an ADC input and overrides any control from the port I/O logic. See Section 15. Analog-to-Digital Converter (ADC).
NOTE:
Care must be taken when reading port C while applying analog voltages to ATD[12:8] pins. If the appropriate ADC channel is not enabled, excessive current drain may occur if analog voltages are applied to the PTCx/ATDx pin, while PTC is read as a digital input. Those ports not selected as analog input channels are considered digital I/O ports. CD -- Current Detect Output Pin The CD pin is used for the current detect output from the analog module. The pin reflects the status of the current detect interrupt flag. The current detect output enable bit, CDOEN, in the configuration register 2 enables the PTC0/PWM0/CD pin as the CD output pin and overrides any control from the port I/O or PWM logic. See Section 14. Analog Module. Table 18-5. PTC0 Pin Configuration
Pin CDOEN Bit ($001D) PCH0 Bit ($0051) Pin function
0 PTC0/PWM0/CD 0 1
0 1 X
PTC0 PWM0 CD
LED drive -- Direct LED drive Pins PTC7-PTC3 pins can be configured for direct LED drive. See 18.5.3 Port C LED Control Register (LEDC).
Data Sheet 328 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Input/Output (I/O) Ports Freescale Semiconductor
Input/Output (I/O) Ports Port C
18.5.2 Data Direction Register C (DDRC) Data direction register C determines whether each port C pin is an input or an output. Writing a logic 1 to a DDRC bit enables the output buffer for the corresponding port C pin; a logic 0 disables the output buffer.
Address: $0006 Bit 7 Read: DDRC7 Write: Reset: 0 0 0 0 0 0 0 0 DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0 6 5 4 3 2 1 Bit 0
Figure 18-10. Data Direction Register B (DDRB) DDRC[7:0] -- Data Direction Register C Bits These read/write bits control port C data direction. Reset clears DDRC[7:0], configuring all port C pins as inputs. 1 = Corresponding port C pin configured as output 0 = Corresponding port C pin configured as input
NOTE:
Avoid glitches on port C pins by writing to the port C data register before changing data direction register C bits from 0 to 1. Figure 18-11 shows the port C I/O logic. For those devices packaged in a 42-pin shrink dual in-line package, PTC6 and PTC7 are not connected. DDRC6 and DDRC7 should be set to a 1 to configure PTC6 and PTC7 as outputs.
READ DDRC ($0006)
NOTE:
WRITE DDRC ($0006) INTERNAL DATA BUS RESET WRITE PTC ($0002) PTCx PTCx DDRCx
READ PTC ($0002)
Figure 18-11. Port C I/O Circuit
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Input/Output (I/O) Ports Data Sheet 329
Input/Output (I/O) Ports
When DDRCx is a logic 1, reading address $0002 reads the PTCx data latch. When DDRCx is a logic 0, reading address $0002 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 18-6 summarizes the operation of the port C pins. Table 18-6. Port C Pin Functions
DDRC Bit Accesses to DDRC PTC Bit I/O Pin Mode Read/Write Read Write Accesses to PTC
0 1
X(1) X
Input, Hi-Z(2) Output
DDRC[7:0] DDRC[7:0]
Pin PTC[7:0]
PTC[7:0](3)
PTC[7:0]
Notes: 1. X = don't care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect input.
18.5.3 Port C LED Control Register (LEDC) The port-C LED control register (LEDC) controls the direct LED drive capability on PTC7-PTC3 pins. Each bit is individually configurable and requires that the data direction register, DDRD, bit be configured as an output.
Address: $000D Bit 7 Read: LEDC7 Write: Reset: 0 0 0 0 0 0 0 0 LEDC6 LEDC5 LEDC4 LEDC3 6 5 4 3 2 0 1 0 Bit 0 0
Figure 18-12. Port A LED Control Register (LEDA) LEDC[7:3] -- Port C LED Drive Enable Bits These read/write bits are software programmable to enable the direct LED drive on an output port pin. 1 = Corresponding port C pin configured for direct LED drive 0 = Corresponding port C pin configured for standard drive
Data Sheet 330
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Input/Output (I/O) Ports Freescale Semiconductor
Input/Output (I/O) Ports Port D
18.6 Port D
Port D is an 8-bit special function port that shares all of its pins with the keyboard interrupt module. See Section 20. Keyboard Interrupt Module (KBI). 18.6.1 Port D Data Register (PTD) The port D data register contains a data latch for each of the eight port D pins.
Address: $0003 Bit 7 Read: PTD7 Write: Reset: Alternative Function: KBI7 KBI6 KBI5 Unaffected by reset KBI4 KBI3 KBI2 KBI1 KBI0 PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0 6 5 4 3 2 1 Bit 0
Figure 18-13. Port D Data Register (PTD) PTD[7:0] -- Port D Data Bits These read/write bits are software programmable. Data direction of each port D pin is under the control of the corresponding bit in data direction register D. Reset has no effect on port D data. KBI[7:0] -- Keyboard Interrupt Pins The keyboard interrupt enable bits, KBIE[7:0], in the keyboard interrupt enable register (KBIER), enable the port D pins as external interrupt pins. See Section 20. Keyboard Interrupt Module (KBI).
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Input/Output (I/O) Ports
Data Sheet 331
Input/Output (I/O) Ports
18.6.2 Data Direction Register D (DDRD) Data direction register D determines whether each port D pin is an input or an output. Writing a logic 1 to a DDRD bit enables the output buffer for the corresponding port D pin; a logic 0 disables the output buffer.
Address: $0007 Bit 7 Read: DDRD7 Write: Reset: 0 0 0 0 0 0 0 0 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 6 5 4 3 2 1 Bit 0
Figure 18-14. Data Direction Register D (DDRD) DDRD[7:0] -- Data Direction Register D Bits These read/write bits control port D data direction. Reset clears DDRD[7:0], configuring all port D pins as inputs. 1 = Corresponding port D pin configured as output 0 = Corresponding port D pin configured as input
NOTE:
Avoid glitches on port D pins by writing to the port D data register before changing data direction register D bits from 0 to 1. Figure 18-15 shows the port D I/O logic.
READ DDRD ($0007)
WRITE DDRD ($0007) INTERNAL DATA BUS RESET WRITE PTD ($0003) PTDx PTDx DDRDx
READ PTD ($0003)
Figure 18-15. Port D I/O Circuit
Data Sheet 332
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Input/Output (I/O) Ports Freescale Semiconductor
Input/Output (I/O) Ports Port D
When DDRDx is a logic 1, reading address $0003 reads the PTDx data latch. When DDRDx is a logic 0, reading address $0003 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 18-7 summarizes the operation of the port D pins. Table 18-7. Port D Pin Functions
DDRD Bit 0 1 PTD Bit X(1) X I/O Pin Mode Input, Hi-Z(2) Output Accesses to DDRD Read/Write DDRD[7:0] DDRD[7:0] Accesses to PTD Read Pin PTD[7:0] Write PTD[7:0](3) PTD[7:0]
Notes: 1. X = don't care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect the input.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Input/Output (I/O) Ports
Data Sheet 333
Input/Output (I/O) Ports
Data Sheet 334
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Input/Output (I/O) Ports Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 19. External Interrupt (IRQ)
19.1 Contents
19.2 19.3 19.4 19.5 19.6 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336 IRQ1 and IRQ2 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 339
19.7 IRQ Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 19.7.1 IRQ1 Status and Control Register . . . . . . . . . . . . . . . . . . . 340 19.7.2 IRQ2 Status and Control Register . . . . . . . . . . . . . . . . . . . 341
19.2 Introduction
The external interrupt (IRQ) module provides two maskable interrupt inputs: IRQ1 and IRQ2.
19.3 Features
Features of the IRQ module include: * * * * * * * A dedicated external interrupt pin, IRQ1 An external interrupt pin shared with a port pin, IRQ2/PTB6 Separate IRQ interrupt control bits for IRQ1 and IRQ2 Hysteresis buffers Programmable edge-only or edge and level interrupt sensitivity Automatic interrupt acknowledge Internal pullup resistor, with disable option on IRQ2
Data Sheet 335
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor External Interrupt (IRQ)
External Interrupt (IRQ)
NOTE:
References to either IRQ1 or IRQ2 may be made in the following text by omitting the IRQ number. For example, IRQF may refer generically to IRQ1F and IRQ2F, and IMASK may refer to IMASK1 and IMASK2.
Addr.
Register Name Read: IRQ2 Status and Control Register Write: (INTSCR2) Reset: Read: IRQ1 Status and Control Register Write: (INTSCR1) Reset:
Bit 7 0
6 PTBPUE6 0 0
5 0
4 0
3 IRQ2F
2 0 ACK2
1 IMASK2 0 IMASK1 0
Bit 0 MODE2 0 MODE1 0
$001C
0 0
0 0
0 0
0 IRQ1F
0 0 ACK1
$001E
0
0
0
0
0
0
= Unimplemented
Figure 19-1. External Interrupt I/O Register Summary
19.4 Functional Description
A logic 0 applied to the external interrupt pin can latch a CPU interrupt request. Figure 19-2 and Figure 19-3 shows the structure of the IRQ module. Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch remains set until one of the following actions occurs: * Vector fetch -- A vector fetch automatically generates an interrupt acknowledge signal that clears the latch that caused the vector fetch. Software clear -- Software can clear an interrupt latch by writing to the appropriate acknowledge bit in the interrupt status and control register (INTSCR). Writing a logic 1 to the ACK bit clears the IRQ latch. Reset -- A reset automatically clears the interrupt latch.
*
*
The external interrupt pin is falling-edge-triggered and is softwareconfigurable to be either falling-edge or falling-edge and low-leveltriggered. The MODE bit in the INTSCR controls the triggering sensitivity of the IRQ pin.
Data Sheet 336 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 External Interrupt (IRQ) Freescale Semiconductor
External Interrupt (IRQ) Functional Description
When an interrupt pin is edge-triggered only, the interrupt remains set until a vector fetch, software clear, or reset occurs. When an interrupt pin is both falling-edge and low-level-triggered, the interrupt remains set until both of the following occur: * * Vector fetch or software clear Return of the interrupt pin to logic 1
The vector fetch or software clear may occur before or after the interrupt pin returns to logic 1. As long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE1 control bit, thereby clearing the interrupt even if the pin stays low. When set, the IMASK bit in the INTSCR mask all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the IMASK bit is clear.
NOTE:
The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests.
INTERNAL ADDRESS BUS
ACK1 RESET VECTOR FETCH DECODER VDD INTERNAL PULLUP DEVICE IRQ1 VDD D CLR Q SYNCHRONIZER IRQ1F IRQ1 INTERRUPT REQUEST TO CPU FOR BIL/BIH INSTRUCTIONS
CK IRQ1 FF
IMASK1
MODE1 HIGH VOLTAGE DETECT TO MODE SELECT LOGIC
Figure 19-2. IRQ1 Block Diagram
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor External Interrupt (IRQ)
Data Sheet 337
External Interrupt (IRQ)
INTERNAL ADDRESS BUS
ACK2 RESET VECTOR FETCH DECODER VDD INTERNAL PULLUP DEVICE PTBPUE6 D IRQ2
VDD CLR Q SYNCHRONIZER
IRQ2F IRQ2 INTERRUPT REQUEST
CK IRQ2 FF
IMASK2
MODE2
Figure 19-3. IRQ2 Block Diagram
19.5 IRQ1 and IRQ2 Pins
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear, or reset clears the IRQ latch. If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and lowlevel-sensitive. With MODE set, both of the following actions must occur to clear IRQ: * Vector fetch or software clear -- A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACK bit in the interrupt status and control register (INTSCR). The ACK bit is useful in applications that poll the IRQ pin and require software to clear the IRQ latch. Writing to the ACK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ pin. A falling edge that occurs after writing to the ACK bit another interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the program counter with the vector address at location defined in Table 2-1 . Vector Addresses.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 External Interrupt (IRQ) Freescale Semiconductor
Data Sheet 338
External Interrupt (IRQ) IRQ Module During Break Interrupts
*
Return of the IRQ pin to logic 1 -- As long as the IRQ pin is at logic 0, IRQ remains active.
The vector fetch or software clear and the return of the IRQ pin to logic 1 may occur in any order. The interrupt request remains pending as long as the IRQ pin is at logic 0. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low. If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With MODE clear, a vector fetch or software clear immediately clears the IRQ latch. The IRQF bit in the INTSCR register can be used to check for pending interrupts. The IRQF bit is not affected by the IMASK bit, which makes it useful in applications where polling is preferred. Use the BIH or BIL instruction to read the logic level on the IRQ1 pin.
NOTE: NOTE:
The BIH and BIL instructions do not read the logic level on the IRQ2 pin. When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine. The IRQ1 pin has a permanent internal pullup device connected, while the IRQ2 pin has an optional pullup device that can be enabled or disabled by the PTBPUE6 bit in the INTSCR2 register.
19.6 IRQ Module During Break Interrupts
The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear the latch during the break state. (See Section 23. Break Module (BRK).) To allow software to clear the IRQ latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect CPU interrupt flags during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the ACK bit in the IRQ status and control register during the break state has no effect on the IRQ interrupt flags.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor External Interrupt (IRQ) Data Sheet 339
External Interrupt (IRQ) 19.7 IRQ Registers
Each IRQ is controlled and monitored by an status and control register. * * IRQ1 Status and Control Register -- $001E IRQ2 Status and Control Register -- $001C
19.7.1 IRQ1 Status and Control Register The IRQ1 status and control register (INTSCR1) controls and monitors operation of IRQ1. The INTSCR1 has the following functions: * * * *
Address:
Shows the state of the IRQ1 flag Clears the IRQ1 latch Masks IRQ1 interrupt request Controls triggering sensitivity of the IRQ1 interrupt pin
$001E Bit 7 6 0 5 0 4 0 3 IRQ1F 2 0 IMASK1 MODE1 0 ACK1 0 0 0 0 0 0 0 1 Bit 0
Read: Write: Reset:
0
= Unimplemented
Figure 19-4. IRQ1 Status and Control Register (INTSCR1) IRQ1F -- IRQ1 Flag Bit This read-only status bit is high when the IRQ1 interrupt is pending. 1 = IRQ1 interrupt pending 0 = IRQ1 interrupt not pending ACK1 -- IRQ1 Interrupt Request Acknowledge Bit Writing a logic 1 to this write-only bit clears the IRQ1 latch. ACK1 always reads as logic 0. Reset clears ACK1.
Data Sheet 340
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 External Interrupt (IRQ) Freescale Semiconductor
External Interrupt (IRQ) IRQ Registers
IMASK1 -- IRQ1 Interrupt Mask Bit Writing a logic 1 to this read/write bit disables IRQ1 interrupt requests. Reset clears IMASK1. 1 = IRQ1 interrupt requests disabled 0 = IRQ1 interrupt requests enabled MODE1 -- IRQ1 Edge/Level Select Bit This read/write bit controls the triggering sensitivity of the IRQ1 pin. Reset clears MODE1. 1 = IRQ1 interrupt requests on falling edges and low levels 0 = IRQ1 interrupt requests on falling edges only 19.7.2 IRQ2 Status and Control Register The IRQ2 status and control register (INTSCR2) controls and monitors operation of IRQ2. The INTSCR2 has the following functions: * * * * *
Address:
Enables/disables the internal pullup device on IRQ2 pin Shows the state of the IRQ2 flag Clears the IRQ2 latch Masks IRQ2 interrupt request Controls triggering sensitivity of the IRQ2 interrupt pin
$001C Bit 7 6
PTBPUE6
5 0
4 0
3 IRQ2F
2 0
1 IMASK2
Bit 0 MODE2 0
Read: Write: Reset:
0
ACK2 0 0 0 0 0 0 0
= Unimplemented
Figure 19-5. IRQ2 Status and Control Register (INTSCR2) PTBPUE6 -- IRQ2 Pin Pullup Enable Bit. Setting this bit to logic 1 disables the pullup on PTB6/IRQ2 pin. Reset clears this bit. 1 = IRQ2 pin internal pull-up is disabled 0 = IRQ2 pin internal pull-up is enabled
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor External Interrupt (IRQ) Data Sheet 341
External Interrupt (IRQ)
IRQ2F -- IRQ2 Flag Bit This read-only status bit is high when the IRQ2 interrupt is pending. 1 = IRQ2 interrupt pending 0 = IRQ2 interrupt not pending ACK2 -- IRQ2 Interrupt Request Acknowledge Bit Writing a logic 1 to this write-only bit clears the IRQ2 latch. ACK2 always reads as logic 0. Reset clears ACK2. IMASK2 -- IRQ2 Interrupt Mask Bit Writing a logic 1 to this read/write bit disables IRQ2 interrupt requests. Reset clears IMASK2. 1 = IRQ2 interrupt requests disabled 0 = IRQ2 interrupt requests enabled MODE2 -- IRQ2 Edge/Level Select Bit This read/write bit controls the triggering sensitivity of the IRQ2 pin. Reset clears MODE2. 1 = IRQ2 interrupt requests on falling edges and low levels 0 = IRQ2 interrupt requests on falling edges only
Data Sheet 342
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 External Interrupt (IRQ) Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 20. Keyboard Interrupt Module (KBI)
20.1 Contents
20.2 20.3 20.4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
20.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 20.5.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 20.6 Keyboard Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . 347 20.6.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 348 20.6.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 349 20.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 20.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349 20.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349 20.10 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 350
20.2 Introduction
The keyboard interrupt module (KBI) provides eight independently maskable external interrupts which are accessible via PTD0-PTD7. When a port pin is enabled for keyboard interrupt function, an internal 30k pullup device is also enabled on the pin.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Keyboard Interrupt Module (KBI)
Data Sheet 343
Keyboard Interrupt Module (KBI) 20.3 Features
Features of the keyboard interrupt module include the following: * * * * Eight keyboard interrupt pins with pullup devices Separate keyboard interrupt enable bits and one keyboard interrupt mask Programmable edge-only or edge- and level- interrupt sensitivity Exit from low-lower modes
Addr.
Register Name Read: Keyboard Status and Control Register Write: (KBSCR) Reset:
Bit 7 0
6 0
5 0
4 0
3 KEYF
2 0
1 IMASKK
Bit 0 MODEK 0 KBIE0 0
$001A
ACKK 0 KBIE7 0 0 KBIE6 0 0 KBIE5 0 0 KBIE4 0 0 KBIE3 0 0 KBIE2 0 0 KBIE1 0
Read: Keyboard Interrupt Enable Write: $001B Register (KBIER) Reset:
= Unimplemented
Figure 20-1. KBI I/O Register Summary
20.4 I/O Pins
The eight keyboard interrupt pins are shared with standard port I/O pins. The full name of the KBI pins are listed in Table 20-1. The generic pin name appear in the text that follows. Table 20-1. Pin Name Conventions
KBI Generic Pin Name KBI0-KBI7 Full MCU Pin Name PTD0/KBI0-PTD7/KBI7 Pin Selected for KBI Function by KBIEx Bit in KBIER KBIE0-KBIE7
Data Sheet 344
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Keyboard Interrupt Module (KBI) Freescale Semiconductor
Keyboard Interrupt Module (KBI) Functional Description
20.5 Functional Description
INTERNAL BUS
KBI0 VDD . KBIE0 TO PULLUP ENABLE . KBI7 . D CLR Q
ACKK RESET
VECTOR FETCH DECODER KEYF SYNCHRONIZER Keyboard Interrupt Request
CK
KEYBOARD INTERRUPT FF
IMASKK
MODEK KBIE7 TO PULLUP ENABLE
Figure 20-2. Keyboard Interrupt Block Diagram Writing to the KBIE7-KBIE0 bits in the keyboard interrupt enable register independently enables or disables each port D pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin in port D also enables its internal pull-up device. A logic 0 applied to an enabled keyboard interrupt pin latches a keyboard interrupt request. A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt. * If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on one pin because another pin is still low, software can disable the latter pin while it is low. If the keyboard interrupt is falling edge- and low level-sensitive, an interrupt request is present as long as any keyboard pin is low.
*
If the MODEK bit is set, the keyboard interrupt pins are both falling edgeand low level-sensitive, and both of the following actions must occur to clear a keyboard interrupt request:
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Keyboard Interrupt Module (KBI) Data Sheet 345
Keyboard Interrupt Module (KBI)
* Vector fetch or software clear -- A vector fetch generates an interrupt acknowledge signal to clear the interrupt request. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACKK bit in the keyboard status and control register KBSCR. The ACKK bit is useful in applications that poll the keyboard interrupt pins and require software to clear the keyboard interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program counter with the vector address at locations $FFE0 and $FFE1. Return of all enabled keyboard interrupt pins to logic 1 -- As long as any enabled keyboard interrupt pin is at logic 0, the keyboard interrupt remains set.
*
The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may occur in any order. If the MODEK bit is clear, the keyboard interrupt pin is falling-edgesensitive only. With MODEK clear, a vector fetch or software clear immediately clears the keyboard interrupt request. Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a keyboard interrupt pin stays at logic 0. The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes it useful in applications where polling is preferred. To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the pin as an input and read the data register.
NOTE:
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a logic 0 for software to read the pin.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Keyboard Interrupt Module (KBI) Freescale Semiconductor
Data Sheet 346
Keyboard Interrupt Module (KBI) Keyboard Interrupt Registers
20.5.1 Keyboard Initialization When a keyboard interrupt pin is enabled, it takes time for the internal pull-up to reach a logic 1. Therefore a false interrupt can occur as soon as the pin is enabled. To prevent a false interrupt on keyboard initialization: 1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register. 2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. 3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts. 4. Clear the IMASKK bit. An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that depends on the external load. Another way to avoid a false interrupt: 1. Configure the keyboard pins as outputs by setting the appropriate DDR bits in data direction register. 2. Write logic 1s to the appropriate data register bits. 3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.
20.6 Keyboard Interrupt Registers
Two registers control the operation of the keyboard interrupt module: * * Keyboard Status and Control Register -- $001A Keyboard Interrupt Enable Register -- $001B
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Keyboard Interrupt Module (KBI)
Data Sheet 347
Keyboard Interrupt Module (KBI)
20.6.1 Keyboard Status and Control Register * * * *
Address:
Flags keyboard interrupt requests Acknowledges keyboard interrupt requests Masks keyboard interrupt requests Controls keyboard interrupt triggering sensitivity
$001A Bit 7 6 0 5 0 4 0 3 KEYF 2 0 IMASKK MODEK 0 ACKK 0 0 0 0 0 0 0 1 Bit 0
Read: Write: Reset:
0
= Unimplemented
Figure 20-3. Keyboard Status and Control Register (KBSCR) KEYF -- Keyboard Flag Bit This read-only bit is set when a keyboard interrupt is pending. Reset clears the KEYF bit. 1 = Keyboard interrupt pending 0 = No keyboard interrupt pending ACKK -- Keyboard Acknowledge Bit Writing a logic 1 to this write-only bit clears the keyboard interrupt request. ACKK always reads as logic 0. Reset clears ACKK. IMASKK -- Keyboard Interrupt Mask Bit Writing a logic 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating interrupt requests. Reset clears the IMASKK bit. 1 = Keyboard interrupt requests masked 0 = Keyboard interrupt requests not masked MODEK -- Keyboard Triggering Sensitivity Bit This read/write bit controls the triggering sensitivity of the keyboard interrupt pins. Reset clears MODEK. 1 = Keyboard interrupt requests on falling edges and low levels 0 = Keyboard interrupt requests on falling edges only
Data Sheet 348 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Keyboard Interrupt Module (KBI) Freescale Semiconductor
Keyboard Interrupt Module (KBI) Low-Power Modes
20.6.2 Keyboard Interrupt Enable Register The port-D keyboard interrupt enable register enables or disables each port-D pin to operate as a keyboard interrupt pin.
Address: $001B Bit 7 Read: KBIE7 Write: Reset: 0 0 0 0 0 0 0 0 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 6 5 4 3 2 1 Bit 0
Figure 20-4. Keyboard Interrupt Enable Register (KBIER) KBIE7-KBIE0 -- Keyboard Interrupt Enable Bits Each of these read/write bits enables the corresponding keyboard interrupt pin to latch interrupt requests. Reset clears the keyboard interrupt enable register. 1 = KBIx pin enabled as keyboard interrupt pin 0 = KBIx pin not enabled as keyboard interrupt pin
20.7 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
20.7.1 Wait Mode The keyboard interrupt module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode.
20.7.2 Stop Mode The keyboard interrupt module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Keyboard Interrupt Module (KBI) Data Sheet 349
Keyboard Interrupt Module (KBI) 20.8 Keyboard Module During Break Interrupts
The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during the break state. The BCFE bit in the SIM break flag control register (BFCR) enables software to clear status bits during the break state. To allow software to clear the keyboard interrupt latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the latch during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the break state has no effect.
Data Sheet 350
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Keyboard Interrupt Module (KBI) Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 21. Computer Operating Properly (COP)
21.1 Contents
21.2 21.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352
21.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 21.4.1 ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 21.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 21.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353 21.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 21.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 21.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 21.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 21.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 354 21.5 21.6 21.7 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355
21.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 21.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356 21.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356 21.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 356
21.2 Introduction
The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the configuration register 1 (CONFIG1).
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Computer Operating Properly (COP) Data Sheet 351
Computer Operating Properly (COP) 21.3 Functional Description
Figure 21-1 shows the structure of the COP module.
ICLK
12-BIT COP PRESCALER CLEAR ALL STAGES CLEAR STAGES 5-12
RESET CIRCUIT RESET STATUS REGISTER
STOP INSTRUCTION INTERNAL RESET SOURCES RESET VECTOR FETCH COPCTL WRITE
COP CLOCK
6-BIT COP COUNTER COPEN (FROM SIM) COP DISABLE (COPD FROM CONFIG1) RESET COPCTL WRITE COP RATE SEL (COPRS FROM CONFIG1)
CLEAR COP COUNTER
Figure 21-1. COP Block Diagram The COP counter is a free-running 6-bit counter preceded by a 12-bit prescaler counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 218 - 24 or 213 - 24 ICLK cycles, depending on the state of the COP rate select bit, COPRS, in the CONFIG1 register. With a 213 - 24 ICLK cycle overflow option, a 24-kHz ICLK gives a COP timeout period of 341ms. Writing any value to location $FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and stages 12 through 5 of the prescaler.
NOTE:
Service the COP immediately after reset and before entering or after exiting STOP Mode to guarantee the maximum time before the first COP counter overflow.
Data Sheet 352
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Computer Operating Properly (COP) Freescale Semiconductor
COP TIMEOUT
Computer Operating Properly (COP) I/O Signals
A COP reset pulls the RST pin low for 32 ICLK cycles and sets the COP bit in the SIM reset status register (SRSR). In monitor mode, the COP is disabled if the RST pin or the IRQ1 is held at VTST. During the break state, VTST on the RST pin disables the COP.
NOTE:
Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly.
21.4 I/O Signals
The following paragraphs describe the signals shown in Figure 21-1.
21.4.1 ICLK ICLK is the internal oscillator output signal. ICLK frequency is approximately equal to 24kHz. See Section 24. Electrical Specifications for ICLK parameters.
21.4.2 STOP Instruction The STOP instruction clears the COP prescaler.
21.4.3 COPCTL Write Writing any value to the COP control register (COPCTL) (see 21.5 COP Control Register) clears the COP counter and clears bits 12 through 5 of the prescaler. Reading the COP control register returns the low byte of the reset vector.
21.4.4 Power-On Reset The power-on reset (POR) circuit clears the COP prescaler 4096 ICLK cycles after power-up.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Computer Operating Properly (COP)
Data Sheet 353
Computer Operating Properly (COP)
21.4.5 Internal Reset An internal reset clears the COP prescaler and the COP counter. 21.4.6 Reset Vector Fetch A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the COP prescaler.
21.4.7 COPD (COP Disable) The COPD signal reflects the state of the COP disable bit (COPD) in the CONFIG1 register. (See Figure 21-2 and Section 5. Configuration and Mask Option Registers (CONFIG & MOR).) 21.4.8 COPRS (COP Rate Select) The COPRS signal reflects the state of the COP rate select bit (COPRS) in the CONFIG1 register.
Address: $001F Bit 7 Read: COPRS Write: Reset: 0 0 0 0 0* 0 0 0 LVISTOP LVIRSTD LVIPWRD LVI5OR3 SSREC STOP COPD 6 5 4 3 2 1 Bit 0
* Reset by POR only.
Figure 21-2. Configuration Register 1 (CONFIG1) COPRS -- COP Rate Select COPRS selects the COP time-out period. Reset clears COPRS. 1 = COP time out period = 213 - 24 ICLK cycles 0 = COP time out period = 218 - 24 ICLK cycles COPD -- COP Disable Bit COPD disables the COP module. 1 = COP module disabled 0 = COP module enabled
Data Sheet 354 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Computer Operating Properly (COP) Freescale Semiconductor
Computer Operating Properly (COP) COP Control Register
21.5 COP Control Register
The COP control register is located at address $FFFF and overlaps the reset vector. Writing any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low byte of the reset vector.
Address: $FFFF Bit 7 Read: Write: Reset: 6 5 4 3 2 1 Bit 0
Low byte of reset vector Clear COP counter Unaffected by reset
Figure 21-3. COP Control Register (COPCTL)
21.6 Interrupts
The COP does not generate CPU interrupt requests.
21.7 Monitor Mode
When monitor mode is entered with VTST on the IRQ1 pin, the COP is disabled as long as VTST remains on the IRQ1 pin or the RST pin. When monitor mode is entered by having blank reset vectors and not having VTST on the IRQ1 pin, the COP is automatically disabled until a POR occurs.
21.8 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Computer Operating Properly (COP)
Data Sheet 355
Computer Operating Properly (COP)
21.8.1 Wait Mode The COP remains active during wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter in a CPU interrupt routine.
21.8.2 Stop Mode Stop mode turns off the ICLK input to the COP and clears the COP prescaler. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode. To prevent inadvertently turning off the COP with a STOP instruction, a configuration option is available that disables the STOP instruction. When the STOP bit in the configuration register has the STOP instruction is disabled, execution of a STOP instruction results in an illegal opcode reset.
21.9 COP Module During Break Mode
The COP is disabled during a break interrupt when VTST is present on the RST pin.
Data Sheet 356
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Computer Operating Properly (COP) Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 22. Low-Voltage Inhibit (LVI)
22.1 Contents
22.2 22.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
22.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358 22.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 22.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . .360 22.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 360 22.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 22.5 22.6 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361
22.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 22.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 22.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362
22.2 Introduction
This section describes the low-voltage inhibit (LVI) module, which monitors the voltage on the VDD pin and can force a reset when the VDD voltage falls below the LVI trip falling voltage, VTRIPF.
22.3 Features
Features of the LVI module include: * * * Programmable LVI reset Selectable LVI trip voltage Programmable stop mode operation
Data Sheet 357
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Low-Voltage Inhibit (LVI)
Low-Voltage Inhibit (LVI)
Addr.
Register Name
Bit 7
6 0
5 0
4 0
3 0
2 0
1 0
Bit 0 0
Read: LVIOUT Low-Voltage Inhibit Status $FE0F Register Write: (LVISR) Reset: 0
0
0
0
0
0
0
0
= Unimplemented
Figure 22-1. LVI I/O Register Summary
22.4 Functional Description
Figure 22-2 shows the structure of the LVI module. The LVI is enabled out of reset. The LVI module contains a bandgap reference circuit and comparator. Clearing the LVI power disable bit, LVIPWRD, enables the LVI to monitor VDD voltage. Clearing the LVI reset disable bit, LVIRSTD, enables the LVI module to generate a reset when VDD falls below a voltage, VTRIPF. Setting the LVI enable in stop mode bit, LVISTOP, enables the LVI to operate in stop mode. Setting the LVI 5V or 3V trip point bit, LVI5OR3, enables the trip point voltage, VTRIPF, to be configured for 5V operation. Clearing the LVI5OR3 bit enables the trip point voltage, VTRIPF, to be configured for 3V operation. The actual trip points are shown in Section 24. Electrical Specifications.
VDD STOP INSTRUCTION LVISTOP FROM CONFIG1 FROM CONFIG1 LVIRSTD LVIPWRD FROM CONFIG LOW VDD DETECTOR VDD > VTRIPR = 0 VDD VTRIPF = 1 LVIOUT LVI5OR3 FROM CONFIG1 TO LVISR LVI RESET
Figure 22-2. LVI Module Block Diagram
Data Sheet 358 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Low-Voltage Inhibit (LVI) Freescale Semiconductor
Low-Voltage Inhibit (LVI) Functional Description
NOTE:
After a power-on reset (POR) the LVI's default mode of operation is 3V. If a 5V system is used, the user must set the LVI5OR3 bit to raise the trip point to 5V operation. Note that this must be done after every poweron reset since the default will revert back to 3V mode after each poweron reset. If the VDD supply is below the 5V mode trip voltage but above the 3V mode trip voltage when POR is released, the MCU will operate because VTRIPF defaults to 3V mode after a POR. So, in a 5V system care must be taken to ensure that VDD is above the 5V mode trip voltage after POR is released. If the user requires 5V mode and sets the LVI5OR3 bit after a power-on reset while the VDD supply is not above the VTRIPF for 5V mode, the MCU will immediately go into reset. The LVI in this case will hold the MCU in reset until either VDD goes above the rising 5V trip point, VTRIPR, which will release reset or VDD decreases to approximately 0V which will re-trigger the power-on reset and reset the trip point to 3V operation. LVISTOP, LVIPWRD, LVI5OR3, and LVIRSTD are in the configuration register 1 (CONFIG1). See Section 5. Configuration and Mask Option Registers (CONFIG & MOR) for details of the LVI's configuration bits. Once an LVI reset occurs, the MCU remains in reset until VDD rises above a voltage, VTRIPR, which causes the MCU to exit reset. See 9.4.2.5 Low-Voltage Inhibit (LVI) Reset for details of the interaction between the SIM and the LVI. The output of the comparator controls the state of the LVIOUT flag in the LVI status register (LVISR). An LVI reset also drives the RST pin low to provide low-voltage protection to external peripheral devices.
NOTE:
22.4.1 Polled LVI Operation In applications that can operate at VDD levels below the VTRIPF level, software can monitor VDD by polling the LVIOUT bit. In the configuration register 1 (CONFIG1), the LVIPWRD bit must be at logic 0 to enable the LVI module, and the LVIRSTD bit must be at logic 1 to disable LVI resets.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Low-Voltage Inhibit (LVI)
Data Sheet 359
Low-Voltage Inhibit (LVI)
22.4.2 Forced Reset Operation In applications that require VDD to remain above the VTRIPF level, enabling LVI resets allows the LVI module to reset the MCU when VDD falls below the VTRIPF level. In the configuration register 1 (CONFIG1), the LVIPWRD and LVIRSTD bits must be at logic 0 to enable the LVI module and to enable LVI resets.
22.4.3 Voltage Hysteresis Protection Once the LVI has triggered (by having VDD fall below VTRIPF), the LVI will maintain a reset condition until VDD rises above the rising trip point voltage, VTRIPR. This prevents a condition in which the MCU is continually entering and exiting reset if VDD is approximately equal to VTRIPF. VTRIPR is greater than VTRIPF by the hysteresis voltage, VHYS.
22.4.4 LVI Trip Selection The LVI5OR3 bit in the CONFIG1 register selects whether the LVI is configured for 5V or 3V protection.
NOTE:
The MCU is guaranteed to operate at a minimum supply voltage. The trip point (VTRIPF [5 V] or VTRIPF [3 V]) may be lower than this. (See Section 24. Electrical Specifications for the actual trip point voltages.)
Data Sheet 360
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Low-Voltage Inhibit (LVI) Freescale Semiconductor
Low-Voltage Inhibit (LVI) LVI Status Register
22.5 LVI Status Register
The LVI status register (LVISR) indicates if the VDD voltage was detected below the VTRIPF level.
Address: $FE0F Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 LVIOUT 6 0 5 0 4 0 3 0 2 0 1 0 Bit 0 0
= Unimplemented
Figure 22-3. LVI Status Register LVIOUT -- LVI Output Bit This read-only flag becomes set when the VDD voltage falls below the VTRIPF trip voltage (see Table 22-1). Reset clears the LVIOUT bit. Table 22-1. LVIOUT Bit Indication
VDD VDD > VTRIPR VDD < VTRIPF VTRIPF < VDD < VTRIPR LVIOUT 0 1 Previous value
22.6 LVI Interrupts
The LVI module does not generate interrupt requests.
22.7 Low-Power Modes
The STOP and WAIT instructions put the MCU in low powerconsumption standby modes.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Low-Voltage Inhibit (LVI)
Data Sheet 361
Low-Voltage Inhibit (LVI)
22.7.1 Wait Mode If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of wait mode.
22.7.2 Stop Mode If enabled in stop mode (LVISTOP = 1), the LVI module remains active in stop mode. If enabled to generate resets (LVIRSTD = 0), the LVI module can generate a reset and bring the MCU out of stop mode.
Data Sheet 362
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Low-Voltage Inhibit (LVI) Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 23. Break Module (BRK)
23.1 Contents
23.2 23.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
23.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364 23.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 366 23.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .366 23.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . . 366 23.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 366 23.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 23.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366 23.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367 23.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 23.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . . 367 23.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 368 23.6.3 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 368 23.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 370
23.2 Introduction
This section describes the break module. The break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Break Module (BRK)
Data Sheet 363
Break Module (BRK) 23.3 Features
Features of the break module include: * * * * Accessible input/output (I/O) registers during the break interrupt CPU-generated break interrupts Software-generated break interrupts COP disabling during break interrupts
23.4 Functional Description
When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal to the CPU. The CPU then loads the instruction register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The program counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode). The following events can cause a break interrupt to occur: * * A CPU-generated address (the address in the program counter) matches the contents of the break address registers. Software writes a logic 1 to the BRKA bit in the break status and control register.
When a CPU-generated address matches the contents of the break address registers, the break interrupt begins after the CPU completes its current instruction. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation. Figure 23-1 shows the structure of the break module.
Data Sheet 364
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Break Module (BRK) Freescale Semiconductor
Break Module (BRK) Functional Description
IAB15-IAB8
BREAK ADDRESS REGISTER HIGH 8-BIT COMPARATOR IAB15-IAB0 CONTROL 8-BIT COMPARATOR BREAK ADDRESS REGISTER LOW BREAK
IAB7-IAB0
Figure 23-1. Break Module Block Diagram
Addr.
Register Name
Bit 7 R
6 R
5 R
4 R
3 R
2 R
1 SBSW Note 0
Bit 0 R
Read: SIM Break Status Register $FE00 Write: (SBSR) Reset: Read: SIM Break Flag Control Write: Register (SBFCR) Reset: Read: Break Address Register Write: High (BRKH) Reset: Read: Break Address Register Write: Low (BRKL) Reset:
$FE03
BCFE 0 Bit 15 0 Bit 7 0 BRKE 0
R
R
R
R
R
R
R
$FE0C
14 0 6 0 BRKA 0
13 0 5 0 0
12 0 4 0 0
11 0 3 0 0
10 0 2 0 0
9 0 1 0 0
Bit 8 0 Bit 0 0 0
$FE0D
Read: Break Status and Control $FE0E Write: Register (BRKSCR) Reset:
Note: Writing a logic 0 clears SBSW.
0
0
0 R
0 = Reserved
0
0
= Unimplemented
Figure 23-2. Break Module I/O Register Summary
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Break Module (BRK)
Data Sheet 365
Break Module (BRK)
23.4.1 Flag Protection During Break Interrupts The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state.
23.4.2 CPU During Break Interrupts The CPU starts a break interrupt by: * * Loading the instruction register with the SWI instruction Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD in monitor mode)
The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.
23.4.3 TIM1 and TIM2 During Break Interrupts A break interrupt stops the timer counters.
23.4.4 COP During Break Interrupts The COP is disabled during a break interrupt when VTST is present on the RST pin.
23.5 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
23.5.1 Wait Mode If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from the return address on the stack if SBSW is set (see Section 9. System Integration Module (SIM)). Clear the SBSW bit by writing logic 0 to it.
Data Sheet 366 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Break Module (BRK) Freescale Semiconductor
Break Module (BRK) Break Module Registers
23.5.2 Stop Mode A break interrupt causes exit from stop mode and sets the SBSW bit in the break status register.
23.6 Break Module Registers
These registers control and monitor operation of the break module: * * * * * Break status and control register (BRKSCR) Break address register high (BRKH) Break address register low (BRKL) SIM break status register (SBSR) SIM break flag control register (SBFCR)
23.6.1 Break Status and Control Register The break status and control register (BRKSCR) contains break module enable and status bits.
Address: $FE0E Bit 7 Read: BRKE Write: Reset: 0 0 0 0 0 0 0 0 BRKA 6 5 0 4 0 3 0 2 0 1 0 Bit 0 0
= Unimplemented
Figure 23-3. Break Status and Control Register (BRKSCR) BRKE -- Break Enable Bit This read/write bit enables breaks on break address register matches. Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit. 1 = Breaks enabled on 16-bit address match 0 = Breaks disabled on 16-bit address match
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Break Module (BRK)
Data Sheet 367
Break Module (BRK)
BRKA -- Break Active Bit This read/write status and control bit is set when a break address match occurs. Writing a logic 1 to BRKA generates a break interrupt. Clear BRKA by writing a logic 0 to it before exiting the break routine. Reset clears the BRKA bit. 1 = (When read) Break address match 0 = (When read) No break address match
23.6.2 Break Address Registers The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers.
Address: $FE0C Bit 7 Read: Bit 15 Write: Reset: 0 0 0 0 0 0 0 0 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0
Figure 23-4. Break Address Register High (BRKH)
Address: $FE0D Bit 7 Read: Bit 7 Write: Reset: 0 0 0 0 0 0 0 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0
Figure 23-5. Break Address Register Low (BRKL)
23.6.3 SIM Break Status Register The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from wait mode. The flag is useful in applications requiring a return to wait mode after exiting from a break interrupt.
Data Sheet 368
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Break Module (BRK) Freescale Semiconductor
Break Module (BRK) Break Module Registers
Address:
$FE00 Bit 7 6 R 5 R 4 R 3 R 2 R Note 0 R = Reserved 1 SBSW R R Bit 0
Read: Write: Reset:
Note: Writing a logic 0 clears SBSW.
Figure 23-6. SIM Break Status Register (SBSR) SBSW -- Break Wait Bit This status bit is set when a break interrupt causes an exit from wait mode or stop mode. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Stop mode or wait mode was exited by break interrupt 0 = Stop mode or wait mode was not exited by break interrupt SBSW can be read within the break interrupt routine. The user can modify the return address on the stack by subtracting 1 from it. The following code is an example.
; This code works if the H register has been pushed onto the stack in the break ; service routine software. This code should be executed at the end of the break ; service routine software. HIBYTE LOBYTE ; EQU EQU 5 6
If not SBSW, do RTI BRCLR TST BNE DEC DOLO RETURN DEC PULH RTI SBSW,SBSR, RETURN LOBYTE,SP DOLO HIBYTE,SP LOBYTE,SP ; See if wait mode or stop mode was exited by ; break. ;If RETURNLO is not zero, ;then just decrement low byte. ;Else deal with high byte, too. ;Point to WAIT/STOP opcode. ;Restore H register.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Break Module (BRK)
Data Sheet 369
Break Module (BRK)
23.6.4 SIM Break Flag Control Register The SIM break flag control register (SBFCR) contains a bit that enables software to clear status bits while the MCU is in a break state.
Address: $FE03 Bit 7 Read: BCFE Write: Reset: 0 R = Reserved R R R R R R R 6 5 4 3 2 1 Bit 0
Figure 23-7. SIM Break Flag Control Register (SBFCR) BCFE -- Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break
Data Sheet 370
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Break Module (BRK) Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 24. Electrical Specifications
24.1 Contents
24.2 24.3 24.4 24.5 24.6 24.7 24.8 24.9 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 372 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 373 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 5.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 374 3.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 376 5.0V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 3.0V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
24.10 5.0V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 378 24.11 3.0V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 379 24.12 5.0V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .380 24.13 3.0V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .381 24.14 Analog Module Electrical Characteristics . . . . . . . . . . . . . . . . 382 24.14.1 Temperature Sensor Electrical Characteristics . . . . . . . . . 382 24.14.2 Current Detection Electrical Characteristics. . . . . . . . . . . . 382 24.14.3 Two-Stage Amplifier Electrical Characteristics. . . . . . . . . . 382 24.15 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 383 24.16 MMIIC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 383 24.17 CGM Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . 385 24.18 FLASH Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . 386
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Electrical Specifications
Data Sheet 371
Electrical Specifications 24.2 Introduction
This section contains electrical and timing specifications.
24.3 Absolute Maximum Ratings
Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it.
NOTE:
This device is not guaranteed to operate properly at the maximum ratings. Refer to 24.6 5.0V DC Electrical Characteristics for guaranteed operating conditions. Table 24-1. Absolute Maximum Ratings(1)
Characteristic Supply voltage Input voltage All pins (except IRQ1) IRQ1 pin Maximum current per pin excluding VDD and VSS Maximum current out of VSS Maximum current into VDD Storage temperature
Notes: 1. Voltages referenced to VSS.
Symbol VDD VIN
Value -0.3 to +6.0 VSS -0.3 to VDD +0.3 VSS -0.3 to 8.5 25 100 100 -55 to +150
Unit V
V
I IMVSS IMVDD TSTG
mA mA mA C
NOTE:
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that VIN and VOUT be constrained to the range VSS (VIN or VOUT) VDD. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either VSS or VDD.)
Data Sheet 372
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Electrical Specifications Freescale Semiconductor
Electrical Specifications Functional Operating Range
24.4 Functional Operating Range
Table 24-2. Operating Range
Characteristic Operating temperature range Operating voltage range Symbol TA VDD Value - 40 to +125 -- 5V 10% - 40 to +85 3V 10%(1) 5V 10% Unit C V
Notes: 1. A minimum operating VDD of 3V is required to achieve the ADC module specifications stated in Table 24-11 . 3V ADC Electrical Characteristics.
24.5 Thermal Characteristics
Table 24-3. Thermal Characteristics
Characteristic Thermal resistance 42-pin SDIP 48-pin LQFP I/O pin power dissipation Power dissipation(1) Symbol Value 60 80 User determined PD = (IDD x VDD) + PI/O = K/(TJ + 273 C) PD x (TA + 273 C) + PD2 x JA TA + (PD x JA) Unit C/W C/W W W
JA PI/O PD
Constant(2) Average junction temperature
K TJ
W/C C
Notes: 1. Power dissipation is a function of temperature. 2. K constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and TJ can be determined for any value of TA.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Electrical Specifications
Data Sheet 373
Electrical Specifications 24.6 5.0V DC Electrical Characteristics
Table 24-4. 5V DC Electrical Characteristics
Characteristic(1) Output high voltage (ILOAD = -2.0 mA) PTA[0:7], PTB[4:6], PTC[0:7], PTD[0:7] Output low voltage (ILOAD = 1.6mA) PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7] LED sink current (VDrain = 4.0V) PTA[0:5], PTC[3:7] Input high voltage PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1, IRQ2, OSC1. Input low voltage PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1, IRQ2, OSC1 VDD supply current Run(3), fOP = 8.0 MHz with ADC on with ADC off Wait(4), fOP = 8.0 MHz Stop(5) 25C (with OSC, TBM, current sense, LVI) 25C (with OSC, TBM, current sense) 25C (with OSC, TBM) 25C -40C to 85C (with OSC, TBM, current sense, LVI) -40C to 85C (with OSC, TBM, current sense) -40C to 85C (with OSC, TBM) -40C to 85C -40C to 125C (with OSC, TBM, current sense, LVI) -40C to 125C (with OSC, TBM, current sense) -40C to 125C (with OSC, TBM) -40C to 125C Digital I/O ports Hi-Z leakage current Input current Capacitance Ports (as input or output) POR re-arm voltage(6) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 0 24 18 7.5 50 12 9 1 -- -- -- -- -- -- -- -- -- -- -- -- -- 40 30 15 150 40 30 10 180 50 40 15 200 60 50 25 10 1 12 8 100 mA mA mA A A A A A A A A A A A A A A pF mV Symbol VOH VOL IOL Min VDD -0.8 -- -- Typ(2) -- -- -15 Max -- 0.4 -- Unit V V mA
VIH
0.7 x VDD
--
VDD
V
VIL
VSS
--
0.3 x VDD
V
IDD
IIL IIN COUT CIN VPOR
Data Sheet 374
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Electrical Specifications Freescale Semiconductor
Electrical Specifications 5.0V DC Electrical Characteristics
Table 24-4. 5V DC Electrical Characteristics
Characteristic(1) POR rise-time ramp rate(7) Monitor mode entry voltage Pullup resistors(8) PTD[0:7] configured as KBI[0:7] RST, IRQ1, IRQ2 Low-voltage inhibit, trip falling voltage Low-voltage inhibit, trip rising voltage Schmitt trigger input low level trip voltage RST, IRQ1, IRQ2, KBI[0:7] Schmitt trigger input high level trip voltage RST, IRQ1, IRQ2, KBI[0:7] Symbol RPOR VTST RPU1 RPU2 VLVII5 VLVII5 VSCMTL VSCMTH Min 0.035 1.4 x VDD 24 24 3.80 3.95 -- -- Typ(2) -- -- Max -- 8 Unit V/ms V
35 35 4.15 4.30 1.21 1.65
42 42 4.45 4.60 -- --
k k V V V V
Notes: 1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 C only. 3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. 5. STOP IDD measured with OSC1 grounded, no port pins sourcing current. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. 8. RPU1 and RPU2 are measured at VDD = 5.0V
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Electrical Specifications
Data Sheet 375
Electrical Specifications 24.7 3.0V DC Electrical Characteristics
Table 24-5. 3V DC Electrical Characteristics
Characteristic(1) Output high voltage (ILOAD = -1.0mA) PTA[0:7], PTB[4:6], PTC[0:7], PTD[0:7] Output low voltage (ILOAD = 0.8mA) PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7] LED sink current (VDrain = 2.0V) PTA[0:5], PTC[3:7] Input high voltage PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1, IRQ2, OSC1 Input low voltage PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1, IRQ2, OSC1 VDD supply current Run(3), fOP = 4.0 MHz with ADC on with ADC off Wait(4), fOP = 4.0 MHz Stop(5) 25C (with OSC, TBM, LVI) 25C (with OSC, TBM) 25C -40C to 85C (with OSC, TBM, LVI) -40C to 85C (with OSC, TBM) -40C to 85C Digital I/O ports Hi-Z leakage current Input current Capacitance Ports (as input or output) POR re-arm voltage(6) POR rise-time ramp rate(7) Monitor mode entry voltage Pullup resistors(8) PTD[0:7] configured as KBI[0:7] RST, IRQ1, IRQ2 IDD -- -- -- -- -- -- IIL IIN COUT CIN VPOR RPOR VHI RPU1 RPU2 -- -- -- -- 0 0.035 1.4 x VDD 24 24 27 5 0.5 -- -- -- -- -- -- -- -- -- -- 35 35 80 12 5 100 15 5 10 1 12 8 100 -- 2.0 x VDD 42 42 A A A A A A A A pF mV V/ms V k k -- -- -- 7 5 2.5 16 12 6 mA mA mA Symbol VOH VOL VOL Min VDD -0.4 -- -- 0.7 x VDD Typ(2) -- -- -5 Max -- 0.4 -- Unit V V mA
VIH
--
VDD
V
VIL
VSS
--
0.3 x VDD
V
Data Sheet 376
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Electrical Specifications Freescale Semiconductor
Electrical Specifications 5.0V Control Timing
Table 24-5. 3V DC Electrical Characteristics
Characteristic(1) Low-voltage inhibit, trip voltage (No hysteresis implemented for 3V LVI) Schmitt trigger input low level trip voltage RST, IRQ1, IRQ2, KBI[0:7] Schmitt trigger input high level trip voltage RST, IRQ1, IRQ2, KBI[0:7] Symbol VLVI3 VSCMTL VSCMTH Min 2.32 -- -- Typ(2) 2.49 0.8 1.2 Max 2.68 -- -- Unit V V V
Notes: 1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 C only. 3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. 5. STOP IDD measured with OSC1 grounded, no port pins sourcing current. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. 8. RPU1 and RPU2 are measured at VDD = 5.0V.
24.8 5.0V Control Timing
Table 24-6. 5V Control Timing
Characteristic(1) Internal operating frequency(2) RST input pulse width low(3) Symbol fOP tIRL Min -- 750 Max 8.0 -- Unit MHz ns
Notes: 1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted. 2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information. 3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.
24.9 3.0V Control Timing
Table 24-7. 3V Control Timing
Characteristic(1) Internal operating frequency(2) RST input pulse width low(3) Symbol fOP tIRL Min -- 1.5 Max 4.0 -- Unit MHz s
Notes: 1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted. 2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information. 3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Electrical Specifications
Data Sheet 377
Electrical Specifications 24.10 5.0V Oscillator Characteristics
Table 24-8. 5V Oscillator Specifications
Characteristic Internal oscillator clock frequency External reference clock to OSC1(1) Crystal reference frequency(2) Crystal load capacitance(3) Crystal fixed capacitance Crystal tuning capacitance Feedback bias resistor Series resistor(4) External RC clock frequency External resistor External capacitor
Notes: 1. No more than 10% duty cycle deviation from 50%. 2. Fundamental mode crystals only. 3. Consult crystal manufacturer's data. 4. Not Required for high frequency crystals.
Symbol fICLK fOSC fXCLK CL C1 C2 RB RS fRCCLK REXT CEXT
Min 19.2k dc
Typ 24k -- 32.768k
Max 28.8k 20M 4.9152M -- -- -- -- -- 18M
Unit Hz Hz Hz
-- -- -- -- -- 2M
-- 2 x CL (25p) 2 x CL (25p) 10M 100k -- See Figure 24-1
F F Hz
--
10
--
pF
5 Bus Frequency, fOP (MHz) 4 3 VDD 2 1 0 0 2 4 6 Resistor REXT (k) 8 10 fRCCLK = fOP x 4 REXT CEXT CEXT = 10 pF 5V @ 25C OSC1
MCU
Figure 24-1. RC vs. Bus Frequency (5V @25C)
Data Sheet 378 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Electrical Specifications Freescale Semiconductor
Electrical Specifications 3.0V Oscillator Characteristics
24.11 3.0V Oscillator Characteristics
Table 24-9. 3V Oscillator Specifications
Characteristic Internal oscillator clock frequency External reference clock to OSC1(1) Crystal reference frequency(2) Crystal load capacitance(3) Crystal fixed capacitance Crystal tuning capacitance Feedback bias resistor Series resistor(4) External RC clock frequency External resistor External capacitor
Notes: 1. No more than 10% duty cycle deviation from 50%. 2. Fundamental mode crystals only. 3. Consult crystal manufacturer's data. 4. Not Required for high frequency crystals.
Symbol fICLK fOSC fXCLK CL C1 C2 RB RS fRCCLK REXT CEXT
Min 13.8k dc
Typ 17.2k -- 32.768k
Max 20.6k 16M 4.9152M -- -- -- -- -- 10M
Unit Hz Hz Hz
-- -- -- -- -- 2M
-- 2 x CL (25p) 2 x CL (25p) 10M 100k -- See Figure 24-2
F F Hz
--
10
--
pF
3 Bus Frequency, fOP (MHz) 2.5 2 1.5 1 0.5 0 0 5 10 Resistor REXT (k) 15 20 fRCCLK = fOP x 4 VDD REXT CEXT CEXT = 10 pF 3V @ 25C OSC1
MCU
Figure 24-2. RC vs. Bus Frequency (3V @25C)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Electrical Specifications
Data Sheet 379
Electrical Specifications 24.12 5.0V ADC Electrical Characteristics
Table 24-10. 5V ADC Electrical Characteristics
Characteristic Supply voltage Symbol VDDA VADIN BAD AAD fADIC RAD VREFH VREFL tADC tADS MAD ZADI FADI CADI RADI IVREF 000 3FD -- 20M -- Min 4.5 Max 5.5 VDDA 10 1.5 2M VREFH VDDA + 0.1 -- 17 -- Guaranteed 001 3FF 20 -- 1.6 HEX HEX pF mA Not tested. VADIN = VREFL VADIN = VREFH Not tested. Unit V Notes VDDA is an dedicated pin and should be tied to VDD on the PCB with proper decoupling. VADIN VDDA
Input range Resolution Absolute accuracy ADC internal clock Conversion range ADC voltage reference high ADC voltage reference low Conversion time Sample time Monotonicity Zero input reading Full-scale reading Input capacitance Input impedance VREFH/VREFL
0 10 -- 500k VREFL -- VSSA - 0.1 16 5
V bits LSB Hz V V V tADIC cycles tADIC cycles
Includes quantization. 0.5 LSB = 1 ADC step. tADIC = 1/fADIC
Data Sheet 380
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Electrical Specifications Freescale Semiconductor
Electrical Specifications 3.0V ADC Electrical Characteristics
24.13 3.0V ADC Electrical Characteristics
Table 24-11. 3V ADC Electrical Characteristics
Characteristic Supply voltage Symbol VDDA VADIN BAD AAD fADIC RAD VREFH VREFL tADC tADS MAD ZADI FADI CADI RADI IVREF 000 3FD -- 20M -- Min 3.0 Max 3.3 VDDA 10 1.5 2M VREFH VDDA + 0.1 -- 17 -- Guaranteed 001 3FF 20 -- 1.6 HEX HEX pF mA VADIN = VREFL VADIN = VREFH Not tested. Measured at 5V Not tested. Unit V Notes VDDA is an dedicated pin and should be tied to VDD on the PCB with proper decoupling. VADIN VDDA
Input range Resolution Absolute accuracy ADC internal clock Conversion range ADC voltage reference high ADC voltage reference low Conversion time Sample time Monotonicity Zero input reading Full-scale reading Input capacitance Input impedance VREFH/VREFL
0 10 -- 500 k VREFL -- VSSA - 0.1 16 5
V bits LSB Hz V V V tADIC cycles tADIC cycles
Includes quantization. 0.5 LSB = 1 ADC step. tADIC = 1/fADIC
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Electrical Specifications
Data Sheet 381
Electrical Specifications 24.14 Analog Module Electrical Characteristics
24.14.1 Temperature Sensor Electrical Characteristics Table 24-12. Temperature Sensor Electrical Characteristics
Characteristic Temperature range Temperature slope VDD =5V 10%, GAINA=2, GAINB=6 VDD =3V 10%, GAINA=2, GAINB=4 Symbol Min -20 1.275 1.048 Typ -- 1.338 1.089 Max 70 1.372 1.146 Unit C
ADC steps/C
24.14.2 Current Detection Electrical Characteristics Table 24-13. Current Detection Electrical Characteristics
Characteristic Trip point(1) Symbol VDET Min -6 Typ -- Max +12 Unit mV
Notes: 1. The current detect comparator is designed for VDD =5V 10% only.
24.14.3 Two-Stage Amplifier Electrical Characteristics Table 24-14. Two-Stage Amplifier Electrical Characteristics
Characteristic Amplifier input signal hold time Amplifier response time Amplifier gain tolerance VDD =5V 10%, GAINA=4, GAINB=16 VIN = 10mV to 30mV VIN = 30mV to 65mV VDD =5V 10%, GAINA=6, GAINB=16 VIN = 10mV to 30mV VIN = 30mV to 44mV VDD =3V 10%, GAINA=4, GAINB=16 VIN = 10mV to 38mV VDD =3V 10%, GAINA=6, GAINB=16 VIN = 10mV to 24mV
Notes: 1. tAM is the AMCLK.
Symbol tAMH tAMR
Min
Typ
Max
Unit tAM cycles(1) tAM cycles
10 + [(GAINA - 1) x 2] 70 + (8xGAINA) + (6xGAINB)
-3.5 -1.5 -3.5 -1.5 -3.5 -3.5
-- -- -- -- -- --
+3.5 +1.5 +3.5 +1.5 +3.5 +3.5 %
Data Sheet 382
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Electrical Specifications Freescale Semiconductor
Electrical Specifications Timer Interface Module Characteristics
24.15 Timer Interface Module Characteristics
Characteristic Input capture pulse width Symbol tTIH, tTIL Min 1 Max -- Unit tcyc
24.16 MMIIC Electrical Characteristics
Table 24-15. MMIIC DC Electrical Characteristics
Characteristic(1) Input low Input high Output low Input leakage Symbol VIL VIH VOL ILEAK IPULLUP 100 Min -0.5 2.1 Typ Max 0.8 5.5 0.4 5 Unit V V V A A Comments Data, clock input low. Data, clock input high. Data, clock output low; @IPULLUP,MAX Input leakage current Current through pull-up resistor or current source. See note.(2)
Pullup current
350
Notes: 1. VDD = 2.7 to 5.5Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. The IPULLUP (max) specification is determined primarily by the need to accommodate a maximum of 1.1k equivalent series resistor of removable SMBus devices, such as the smart battery, while maintaining the VOL (max) of the bus.
SDA
SCL
tHD.STA
tLOW
tHIGH
tSU.DAT
tHD.DAT
tSU.STA
tSU.STO
Figure 24-3. MMIIC Signal Timings See Table 24-16 for MMIIC timing parameters.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Electrical Specifications
Data Sheet 383
Electrical Specifications
Table 24-16. MMIIC Interface Input/Output Signal Timing
Characteristic Operating frequency Bus free time Symbol fSMB tBUF Min 10 4.7 Typ Max 100 Unit kHz s Comments MMIIC operating frequency Bus free time between STOP and START condition Hold time after (repeated) START condition. After this period, the first clock is generated. Repeated START condition setup time. Stop condition setup time. Data hold time. Data setup time. Clock low time-out.(1) Clock low period Clock high period.(2) Cumulative clock low extend time (slave device)(3) Cumulative clock low extend time (master device) (4) Clock/Data Fall Time(5) Clock/Data Rise Time(5)
Repeated start hold time.
tHD.STA
4.0
s
Repeated start setup time. Stop setup time Hold time Setup time Clock low time-out Clock low Clock high Slave clock low extend time
tSU.STA tSU.STO tHD.DAT tSU.DAT tTIMEOUT tLOW tHIGH tLOW.SEXT tLOW.MEXT tF tR
4.7 4.0 300 250 25 4.7 4.0 25 35
s s ns ns ms s s ms
Master clock low extend time Fall time Rise time
10 300 1000
ms ns ns
Notes: 1. Devices participating in a transfer will timeout when any clock low exceeds the value of TTIMEOUT min. of 25ms. Devices that have detected a timeout condition must reset the communication no later than TTIMEOUT max of 35ms. The maximum value specified must be adhered to by both a master and a slave as it incorporates the cumulative limit for both a master (10 ms) and a slave (25 ms). Software should turn-off the MMIIC module to release the SDA and SCL lines. 2. THIGH MAX provides a simple guaranteed method for devices to detect the idle conditions. 3. TLOW.SEXT is the cumulative time a slave device is allowed to extend the clock cycles in one message from the initial start to the stop. If a slave device exceeds this time, it is expected to release both its clock and data lines and reset itself. 4. TLOW.MEXT is the cumulative time a master device is allowed to extend its clock cycles within each byte of a message as defined from start-to-ack, ack-to-ack, or ack-to-stop. 5. Rise and fall time is defined as follows: TR = (VILMAX - 0.15) to (VIHMIN + 0.15), TF = 0.9xVDD to (VILMAX - 0.15).
Data Sheet 384
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Electrical Specifications Freescale Semiconductor
Electrical Specifications CGM Electrical Specifications
24.17 CGM Electrical Specifications
Characteristic Reference frequency Range nominal multiplies VCO center-of-range frequency VCO range linear range multiplier VCO power-of-two-range multiplier VCO multiply factor VCO prescale multiplier Reference divider factor VCO operating frequency Manual acquisition time Automatic lock time Automatic lock time Wake up from stop with OSC enabled(1)
(2)
Symbol fRDV fNOM fVRS L 2E N 2P R fVCLK tLOCK tLOCK tLOCK
Min 30 -- 38.4k 1 1 1 1 1 38.4k -- -- --
Typ 32.768 38.4 -- -- -- -- -- 1 -- -- -- 10
Max 100 -- 40.0M 255 4 4095 8 15 40.0M 50 50 15 fRCLK x 0.025% x 2P N/4
Unit kHz kHz Hz
Hz ms ms ms
PLL jitter
fJ
0
--
Hz
Notes: 1. Test condition: VDD = 5.0Vdc / 3.0Vdc, VSS = 0 Vdc. Reference frequency = 32.768kHz, locking to 4MHz bus frequency. 2. Deviation of average bus frequency over 2ms. N = VCO multiplier.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Electrical Specifications
Data Sheet 385
Electrical Specifications 24.18 FLASH Memory Characteristics
Table 24-17. FLASH Memory Electrical Characteristics
Characteristic Data retention voltage Number of rows per page Number of bytes per page Read bus clock frequency Page erase time Mass erase time PGM/ERASE to HVEN setup time High-voltage hold time High-voltage hold time (mass erase) Program hold time Program time Address/data setup time Address/data hold time Recovery time Cumulative HV period Row erase endurance(6) Row program endurance(7) Data retention time(8) fRead(1) tErase(2) tMErase(3) tnvs tnvh tnvhl tpgs tProg tads tadh trcv(4) thv(5) -- -- -- 32k 1 4 10 5 100 5 30 -- -- 1 -- 10k 10k 10 Symbol VRDR Min. 1.3 2 128 8M -- -- -- -- -- -- 40 30 30 -- 25 -- -- -- Max. -- Unit V Rows Bytes Hz ms ms s s s s s ns ns s ms Cycles Cycles Years
Notes: 1. fRead is defined as the frequency range for which the FLASH memory can be read. 2. If the page erase time is longer than tErase (Min.), there is no erase-disturb, but it reduces the endurance of the FLASH memory. 3. If the mass erase time is longer than tMErase (Min.), there is no erase-disturb, but is reduces the endurance of the FLASH memory. 4. It is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing HVEN to logic 0. 5. thv is the cumulative high voltage programming time to the same row before next erase, and the same address can not be programmed twice before next erase. 6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase/program cycles. 7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase/program cycle. 8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time specified.
Data Sheet 386
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Electrical Specifications Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 25. Mechanical Specifications
25.1 Contents
25.2 25.3 25.4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 48-Pin Plastic Low Quad Flat Pack (LQFP) . . . . . . . . . . . . . . 388 42-Pin Shrink Dual In-Line Package (SDIP) . . . . . . . . . . . . . . 389
25.2 Introduction
This section gives the dimensions for: * * 48-pin plastic low quad flat pack (case #932-02) 42-pin shrink dual in-line package (case #858-01)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Mechanical Specifications
Data Sheet 387
Mechanical Specifications 25.3 48-Pin Plastic Low Quad Flat Pack (LQFP)
4X
0.200 AB T-U Z 9 A1
48 37
A
DETAIL Y
P
1
36
T B B1
12 25
U V AE V1 AE
NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE AB IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS T, U, AND Z TO BE DETERMINED AT DATUM PLANE AB. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE AC. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE AB. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.350. 8. MINIMUM SOLDER PLATE THICKNESS SHALL BE 0.0076. 9. EXACT SHAPE OF EACH CORNER IS OPTIONAL. MILLIMETERS MIN MAX 7.000 BSC 3.500 BSC 7.000 BSC 3.500 BSC 1.400 1.600 0.170 0.270 1.350 1.450 0.170 0.230 0.500 BSC 0.050 0.150 0.090 0.200 0.500 0.700 1 5 12 REF 0.090 0.160 0.250 BSC 0.150 0.250 9.000 BSC 4.500 BSC 9.000 BSC 4.500 BSC 0.200 REF 1.000 REF
13
24
Z S1 S
4X
T, U, Z DETAIL Y
0.200 AC T-U Z
AB
G
0.080 AC
AD AC
BASE METAL
DIM A A1 B B1 C D E F G H J K L M N P R S S1 V V1 W AA
M
TOP & BOTTOM
R
GAUGE PLANE
C F D 0.080
M
E
AC T-U Z H DETAIL AD AA W L K
SECTION AE-AE
Figure 25-1. 48-Pin LQFP (Case #932-02)
Data Sheet 388
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Mechanical Specifications Freescale Semiconductor
0.250
N
J
Mechanical Specifications 42-Pin Shrink Dual In-Line Package (SDIP)
25.4 42-Pin Shrink Dual In-Line Package (SDIP)
-A-
42 22 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH. MAXIMUM MOLD FLASH 0.25 (0.010). INCHES MIN MAX 1.435 1.465 0.540 0.560 0.155 0.200 0.014 0.022 0.032 0.046 0.070 BSC 0.300 BSC 0.008 0.015 0.115 0.135 0.600 BSC 0 15 0.020 0.040 MILLIMETERS MIN MAX 36.45 37.21 13.72 14.22 3.94 5.08 0.36 0.56 0.81 1.17 1.778 BSC 7.62 BSC 0.20 0.38 2.92 3.43 15.24 BSC 0 15 0.51 1.02
-B-
1 21
L C H
-T-
SEATING PLANE
F D 42 PL 0.25 (0.010)
M
G TA
S
N K J 42 PL 0.25 (0.010)
M
M TB
S
DIM A B C D F G H J K L M N
Figure 25-2. 42-Pin SDIP (Case #858-01)
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Mechanical Specifications
Data Sheet 389
Mechanical Specifications
Data Sheet 390
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Mechanical Specifications Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Section 26. Ordering Information
26.1 Contents
26.2 26.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
26.2 Introduction
This section contains ordering numbers for the MC68HC908SR12.
26.3 MC Order Numbers
Table 26-1. MC Order Numbers
MC order number
MC68HC908SR12CB MC68HC908SR12MB(2) MC68HC908SR12CFA MC68HC908SR12MFA(2)
Operating temperature range -40 C to +85 C -40 C to +125 C -40 C to +85 C -40 C to +125 C
Package
42-Pin SDIP(1)
48-pin LQFP(3)
Notes: 1. SDIP = Shrink Dual In-Line Package. 2. Temperature grade "M" is available for 5V operating voltage only. 3. LQFP = Low Quad Flat Pack.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor Ordering Information
Data Sheet 391
Ordering Information
Data Sheet 392
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Ordering Information Freescale Semiconductor
Data Sheet -- MC68HC908SR12*MC68HC08SR12
Appendix A. MC68HC08SR12
A.1 Contents
A.2 A.3 A.4 A.5 A.6 A.7 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 Mask Option Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 Reserved Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397
A.8 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 A.8.1 5.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . 398 A.8.2 3.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . 399 A.8.3 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 A.9 ROM Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor MC68HC08SR12
Data Sheet 393
MC68HC08SR12 A.2 Introduction
This section introduces the MC68HC08SR12, the ROM part equivalent to the MC68HC908SR12. The entire data book apply to this ROM device, with exceptions outlined in this appendix. Table A-1. Summary of MC68HC08SR12 and MC68HC908SR12 Differences
MC68HC08SR12 Memory ($C000-$EFFF) User vectors ($FFDA-$FFFF) Oscillator selection (Register at $FF80) 12,288 bytes ROM 38 bytes ROM Mask option register; defined by mask; read only. $FF80 -- MOR Not used; locations are reserved. Used for testing purposes only. MC68HC908SR12 12,288 bytes FLASH 38 bytes FLASH Mask option register; defined by programming FLASH location $FF80. $FF80 -- MOR FLASH related registers. $FE08 -- FLCR $FF09 -- FLBPR Used for testing and FLASH programming/erasing.
Registers at $FE08 and $FF09
Monitor ROM ($FE10-$FF7F)
A.3 MCU Block Diagram
Figure A-1 shows the block diagram of the MC68HC08SR12.
A.4 Memory Map
The MC68HC08SR12 has 12,288 bytes of user ROM from $C000 to $EFFF, and 38 bytes of user ROM vectors from $FFDA to $FFFF. On the MC68HC908SR12, these memory locations are FLASH memory. Figure A-2 shows the memory map of the MC68HC08SR12
Data Sheet 394
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 MC68HC08SR12 Freescale Semiconductor
MONITOR ROM -- 368 BYTES USER ROM VECTORS -- 38 BYTES OSCILLATORS AND CLOCK GENERATOR MODULE INTERNAL OSCILLATOR OSC1 OSC2 CGMXFC
SERIAL COMMUNICATIONS INTERFACE MODULE
MULTI-MASTER IIC (SMBUS) INTERFACE MODULE
PORTB
DDRB
X-TAL OSCILLATOR PHASE-LOCKED LOOP 8-BIT KEYBOARD INTERRUPT MODULE
* RST * IRQ1 ** IRQ2 OPIN1/ATD0
# OPIN2/ATD1
PORTD
DDRD
SYSTEM INTEGRATION MODULE EXTERNAL IRQ MODULE ANALOG MODULE 10-BIT ANALOG-TO-DIGITAL CONVERTER MODULE
COMPUTER OPERATING PROPERLY MODULE
PORTC
DDRC
Freescale Semiconductor MC68HC08SR12 395
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Data Sheet
INTERNAL BUS M68HC08 CPU PORTA DDRA CPU REGISTERS ARITHMETIC/LOGIC UNIT (ALU) 2-CHANNEL TIMER INTERFACE MODULE 1 PTA7/T1CH1 PTA6/T1CH0 PTA5/ATD7 - PTA0/ATD2
CONTROL AND STATUS REGISTERS -- 96 BYTES USER ROM -- 12,288 BYTES USER RAM -- 512 BYTES
2-CHANNEL TIMER INTERFACE MODULE 2 PTB6/IRQ2 PTB5/T2CH1 PTB4/T2CH0 PTB3//SCL1/RxD PTB2/SDA1/TxD PTB1/SCL0 PTB0/SDA0
TIMEBASE MODULE
RC OSCILLATOR
PULSE WIDTH MODULATOR MODULE
PTC7/ATD12 # PTC6/ATD11 # PTC5/ATD10 PTC4/ATD9 PTC3/ATD8 PTC2/PWM2 PTC1/PWM1 PTC0/PWM0/CD
PTD7/KBI7 - PTD0/KBI0 ***
LOW-VOLTAGE INHIBIT MODULE
VSSAM VREFH VREFL VDD VSS VDDA VSSA
POWER-ON RESET MODULE * Pin contains integrated pullup device. ** Pin contains configurable pullup device. *** Pin contains integrated pullup device for KBI functions. Pin is open-drain when configured as output. High current drive pin (for LED). # Pin not bonded on 42-pin SDIP. Shaded blocks indicate differences to MC68HC908SR12
MC68HC08SR12
POWER
Figure A-1. MC68HC08SR12 Block Diagram
MC68HC08SR12
$0000 $005F $0060 $025F $0260 $BFFF $C000 $EFFF $F000 $FDFF $FE00 $FE01 $FE02 $FE03 $FE04 $FE05 $FE06 $FE07 $FE08 $FE09 $FE0A $FE0B $FE0C $FE0D $FE0E $FE0F $FE10 $FF7F $FF80 $FF81 $FFD9 $FFDA $FFFF
I/O Registers 96 Bytes RAM 512 Bytes Unimplemented 48,544 Bytes ROM 12,288 Bytes Unimplemented 3,584 Bytes SIM Break Status Register (SBSR) SIM Reset Status Register (SRSR) Reserved SIM Break Flag Control Register (SBFCR) Interrupt Status Register 1 (INT1) Interrupt Status Register 2 (INT2) Interrupt Status Register 3 (INT3) Reserved Reserved Reserved Reserved Reserved Break Address Register High (BRKH) Break Address Register Low (BRKL) Break Status and Control Register (BRKSCR) LVI Status Register (LVISR) Monitor ROM 368 Bytes Mask Option Register Reserved 89 Bytes ROM Vectors 38 Bytes
Figure A-2. MC68HC08SR12 Memory Map
Data Sheet 396 MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 MC68HC08SR12 Freescale Semiconductor
MC68HC08SR12
A.5 Mask Option Register
The mask option register (MOR) is used for selecting one of the three clock options for the MCU. The MOR at $FF80 is a read-only register on the MC68HC08SR12. It is defined by a mask option (hard-wired connection) specified at the same time as the ROM code submission. On the MC68HC908SR12, the MOR is a byte located in FLASH memory, and is written by a FLASH programming routine.
A.6 Reserved Registers
The two registers at $FE08 and $FF09 are reserved locations on the MC68HC08SR12. On the MC68HC908SR12, these two locations are the FLASH control register and the FLASH block protect register respectively.
A.7 Monitor ROM
The monitor program (monitor ROM, $FE10-$FF7F) on the MC68HC08SR12 is for device testing only.
A.8 Electrical Specifications
Electrical specifications for the MC68HC908SR12 apply to the MC68HC08SR12, except for the parameters indicated below.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor MC68HC08SR12
Data Sheet 397
MC68HC08SR12
A.8.1 5.0V DC Electrical Characteristics Table A-2. 5V DC Electrical Characteristics
Characteristic(1) Output high voltage (ILOAD = -2.0 mA) PTA[0:7], PTB[4:6], PTC[0:7], PTD[0:7] Output low voltage (ILOAD = 1.6mA) PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7] LED sink current (VDrain = 4.0V) PTA[0:5], PTC[3:7] Input high voltage PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1, IRQ2, OSC1. Input low voltage PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1, IRQ2, OSC1 VDD supply current Run(3), fOP = 8.0 MHz with ADC on with ADC off Wait(4), fOP = 8.0 MHz Stop(5) 25C (with OSC, TBM, current sense, LVI) 25C (with OSC, TBM, current sense) 25C (with OSC, TBM) 25C -40C to 85C (with OSC, TBM, current sense, LVI) -40C to 85C (with OSC, TBM, current sense) -40C to 85C (with OSC, TBM) -40C to 85C Digital I/O ports Hi-Z leakage current Input current Capacitance Ports (as input or output) POR re-arm voltage(6) POR rise-time ramp rate(7) Monitor mode entry voltage IDD -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 0 0.035 1.4 x VDD 24 18 7.5 50 12 9 2 -- -- -- -- -- -- -- -- -- -- -- 40 30 15 150 40 30 10 180 50 40 15 10 1 12 8 100 -- 8 mA mA mA A A A A A A A A A A pF mV V/ms V Symbol VOH VOL IOL Min VDD -0.8 -- -- Typ(2) -- -- -15 Max -- 0.4 -- Unit V V mA
VIH
0.7 x VDD
--
VDD
V
VIL
VSS
--
0.3 x VDD
V
IIL IIN COUT CIN VPOR RPOR VTST
Data Sheet 398
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 MC68HC08SR12 Freescale Semiconductor
MC68HC08SR12
Table A-2. 5V DC Electrical Characteristics
Characteristic(1) Pullup resistors(8) PTD[0:7] configured as KBI[0:7] RST, IRQ1, IRQ2 Low-voltage inhibit, trip falling voltage Low-voltage inhibit, trip rising voltage Schmitt trigger input low level trip voltage RST, IRQ1, IRQ2, KBI[0:7] Schmitt trigger input high level trip voltage RST, IRQ1, IRQ2, KBI[0:7] Symbol RPU1 RPU2 VLVII5 VLVII5 VSCMTL VSCMTH Min 24 24 3.80 3.95 -- -- Typ(2) 35 35 4.15 4.30 1.21 1.65 Max 42 42 4.45 4.60 -- -- Unit k k V V V V
Notes: 1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 C only. 3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. 5. STOP IDD measured with OSC1 grounded, no port pins sourcing current. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. 8. RPU1 and RPU2 are measured at VDD = 5.0V
A.8.2 3.0V DC Electrical Characteristics Table A-3. 3V DC Electrical Characteristics
Characteristic(1) Output high voltage (ILOAD = -1.0mA) PTA[0:7], PTB[4:6], PTC[0:7], PTD[0:7] Output low voltage (ILOAD = 0.8mA) PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7] LED sink current (VDrain = 2.0V) PTA[0:5], PTC[3:7] Input high voltage PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1, IRQ2, OSC1 Input low voltage PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1, IRQ2, OSC1 Symbol VOH VOL VOL Min VDD -0.4 -- -- 0.7 x VDD Typ(2) -- -- -5 Max -- 0.4 -- Unit V V mA
VIH
--
VDD
V
VIL
VSS
--
0.3 x VDD
V
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor MC68HC08SR12
Data Sheet 399
MC68HC08SR12
Table A-3. 3V DC Electrical Characteristics
Characteristic(1) VDD supply current Run(3), fOP = 4.0 MHz with ADC on with ADC off Wait(4), fOP = 4.0 MHz Stop(5) 25C (with OSC, TBM, LVI) 25C (with OSC, TBM) 25C -40C to 85C (with OSC, TBM, LVI) -40C to 85C (with OSC, TBM) -40C to 85C Digital I/O ports Hi-Z leakage current Input current Capacitance Ports (as input or output) POR re-arm voltage(6) POR rise-time ramp rate(7) Monitor mode entry voltage Pullup resistors(8) PTD[0:7] configured as KBI[0:7] RST, IRQ1, IRQ2 Low-voltage inhibit, trip voltage (No hysteresis implemented for 3V LVI) Schmitt trigger input low level trip voltage RST, IRQ1, IRQ2, KBI[0:7] Schmitt trigger input high level trip voltage RST, IRQ1, IRQ2, KBI[0:7] IDD -- -- -- -- -- -- IIL IIN COUT CIN VPOR RPOR VHI RPU1 RPU2 VLVI3 VSCMTL VSCMTH -- -- -- -- 0 0.035 1.4 x VDD 24 24 2.32 -- -- 27 5 1.5 -- -- -- -- -- -- -- -- -- -- 35 35 2.49 0.8 1.2 80 12 5 100 15 5 10 1 12 8 100 -- 2.0 x VDD 42 42 2.68 -- -- A A A A A A A A pF mV V/ms V k k V V V -- -- -- 7 5 2.5 16 12 6 mA mA mA Symbol Min Typ(2) Max Unit
Notes: 1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 C only. 3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. 5. STOP IDD measured with OSC1 grounded, no port pins sourcing current. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. 8. RPU1 and RPU2 are measured at VDD = 5.0V.
Data Sheet 400
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 MC68HC08SR12 Freescale Semiconductor
MC68HC08SR12
A.8.3 Memory Characteristics
Characteristic RAM data retention voltage Symbol VRDR Min 1.3 Max -- Unit V
Notes: Since MC68HC08SR12 is a ROM device, FLASH memory electrical characteristics do not apply.
A.9 ROM Order Numbers
These part numbers are generic numbers only. To place an order, ROM code must be submitted to the ROM Processing Center (RPC). Table A-4. MC68HC08SR12 Order Numbers
MC order number
MC68HC08SR12CB MC68HC08SR12CFA
Operating temperature range -40 to +85 C -40 to +85 C
Package
42-Pin SDIP(1) 48-pin LQFP(2)
Notes: 1. SDIP = Shrink Dual In-Line Package. 2. LQFP = Low Quad Flat Pack.
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 Freescale Semiconductor MC68HC08SR12
Data Sheet 401
MC68HC08SR12
Data Sheet 402
MC68HC908SR12*MC68HC08SR12 -- Rev. 5.0 MC68HC08SR12 Freescale Semiconductor
How to Reach Us: USA/Europe/Locations Not Listed: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-521-6274 or 480-768-2130 Japan: Freescale Semiconductor Japan Ltd. Technical Information Center 3-20-1, Minami-Azabu, Minato-ku Tokyo 106-8573, Japan 81-3-3440-3569 Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong 852-26668334 Home Page: www.freescale.com
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Learn More: For more information about Freescale products, please visit www.freescale.com FreescaleTM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. (c) Freescale Semiconductor, Inc. 2004 MC68HC908SR12 Rev. 5 07/2004


▲Up To Search▲   

 
Price & Availability of MC68HC908SR12

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X